计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (7): 292-305.DOI: 10.3778/j.issn.1002-8331.2308-0354

• 工程与应用 • 上一篇    下一篇

基于ChatGPT增强和监督对比学习的政策工具归类研究

胡志强,李朋骏,王金龙,熊晓芸   

  1. 青岛理工大学 信息与控制工程学院,山东 青岛 266525
  • 出版日期:2024-04-01 发布日期:2024-04-01

Research on Policy Tools Classification Based on ChatGPT Augmentation and Supervised Contrastive Learning

HU Zhiqiang, LI Pengjun, WANG Jinlong, XIONG Xiaoyun   

  1. School of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong 266525, China
  • Online:2024-04-01 Published:2024-04-01

摘要: 政策工具的归类是政策文本量化分析和研究的重要维度之一。由于训练数据的缺乏,政策文本相似度高,模型难以学习到足够丰富的特征表示,对它的预测结果缺少置信度,有较高的错误分类风险。为此提出了基于ChatGPT增强和监督对比学习的政策工具分类方法,该方法分为预训练语言模型微调和ChatGPT决策增强两个阶段,第一阶段使用ChatGPT大语言模型增强政策文本以增加训练数据数量,结合监督对比学习微调RoBERTa模型,使模型学习到更丰富的政策文本表示;第二阶段使用ChatGPT辅助决策预训练语言模型置信度较低的文本,降低对相似文本的错误分类风险。在数字产业政策工具分类数据集和Tnews数据集上的实验表明,所提方法优于主流的研究方法,能够有效提升基模型的性能,且在训练样本较少时对基线模型的提升更显著。

关键词: 文本分类, ChatGPT, 数据增强, 监督对比学习, 政策工具

Abstract: The classification of policy tools is an important dimension in the quantification and analysis of policy texts. Due to the scarcity of training data, models are prone to overfitting, resulting in reduced prediction confidence and an increased risk of misclassification. Therefore, policy tool classification method based on ChatGPT augmentation and supervised contrastive learning is proposed. The method consists of two stages:pre-training language model fine-tuning and ChatGPT decision augmentation. In the first stage, ChatGPT, a large language model, augments policy texts to increase the training dataset, while supervised contrastive learning fine-tune the RoBERTa model to improve classification performance. In the second stage, ChatGPT assists in the decision-making process for low confidence texts through the pre-trained language model and reduces the risk of misclassifying similar texts. Experiments on the digital industry policy tools classification dataset and the Tnews dataset show that the proposed method surpasses mainstream research approaches and can effectively improve the performance of the base model, with a more significant improvement observed when the training samples are limited.

Key words: text classification, ChatGPT, data augment, supervised contrastive learning, policy tools