[1] KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks, 1995: 1942-1948.
[2] MIRJALILI S, MIRJALILI S M, LEWIS A, et al. Greywolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[3] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95(5): 51-67.
[4] ARORA S, SINGH S. Butterfly optimization algorithm: a novel approach for global optimization[J]. Soft Computing, 2019, 23(3): 715-734.
[5] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[6] LIN S Q, LI F F. Improved artificial bee colony algorithm based on multi-strategy synthesis for UAV path planning[J]. IEEE Access, 2022, 10: 119269-119282.
[7] 欧阳城添, 朱东林, 邱亚娴. 融合聚类算法的改进麻雀搜索算法[J]. 计算机仿真, 2022, 39(12): 392-397.
OUYANG C T, ZHU D L, QIU Y X. Improved sparrow search algorithm based on clustering algorithm[J]. Computer Simulation, 2022, 39(12): 392-397.
[8] 苏莹莹, 王升旭. 自适应混合策略麻雀搜索算法[J]. 计算机工程与应用, 2023, 59(9): 75-85.
SU Y Y, WANG S X. Adaptive hybrid strategy sparrow search algorithm[J]. Computer Engineering and Applications, 2023, 59(9): 75-85.
[9] 柴岩, 孙笑笑, 任生. 融合多向学习的混沌麻雀搜索算法[J]. 计算机工程与应用, 2023, 59(6): 81-91.
CHAI Y, SUN X X, REN S. Chaotic sparrow search algorithm based on multi-directional learning[J]. Computer Engineering and Applications, 2023, 59(6): 81-91.
[10] 闫少强, 刘卫东, 杨萍, 等. 基于K-means聚类的多种群麻雀搜索算法[J]. 北京航空航天大学学报, 2024(2): 508-518.
YAN S Q, LIU W D, YANG P, et al. Multi group sparrow search algorithm based on k-means clustering[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024(2): 508-518.
[11] 张达敏, 徐航, 王依柔, 等. 嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J]. 控制与决策, 2021, 36(5): 1173-1180.
ZHANG D M, XU H, WANG Y R, et al. Whale optimization algorithm for embedded circle mapping and one-dimensional oppositional learning based small hole imaging[J]. Control and Decision, 2021, 36(5): 1173-1180.
[12] TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]//International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, 2005: 695-701.
[13] 贾鹤鸣, 刘宇翔, 刘庆鑫, 等. 融合随机反向学习的黏菌与算术混合优化算法[J]. 计算机科学与探索, 2022, 16(5): 1182-1192.
JIA H M, LIU Y X, LIU Q X, et al. Hybrid algorithm of slime mould algorithm and arithmetic optimization algorithm based on random opposition-based learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1182-1192.
[14] 廖玮霖, 程杉, 尚冬冬, 等. 多策略融合的粒子群优化算法[J]. 计算机工程与应用, 2021, 57(1): 69-76.
LIAO W L, CHENG S, SHANG D D, et al. Particle swarm optimization algorithm integrated with multiple-strategies[J]. Computer Engineering and Applications, 2021, 57(1): 69-76.
[15] 郭振洲, 王平, 马云峰, 等. 基于自适应权重和柯西变异的鲸鱼优化算法[J]. 微电子学与计算机, 2017, 34(9): 20-25.
GUO Z Z, WANG P, MA Y F, et al. Whale optimization algorithm based on adaptive weight and Cauchy mutation[J]. Microelectronics & Computer, 2017, 34(9): 20-25.
[16] 高文欣, 刘升, 肖子雅, 等. 柯西变异和自适应权重优化的蝴蝶算法[J]. 计算机工程与应用, 2020, 56(15): 43-50.
GAO W X, LIU S, XIAO Z Y, et al. Butterfly optimization algorithm based on Cauchy variation and adaptive weight[J]. Computer Engineering and Applications, 2020, 56(15): 43-50.
[17] 宋立钦, 陈文杰, 陈伟海. 基于混合策略的麻雀搜索算法改进及应用[J]. 北京航空航天大学学报, 2023, 49(8): 2187-2199.
SONG L Q, CHEN W J, CHEN W H. Improvement and application of hybrid strategy-based sparrow search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics , 2023, 49(8): 2187-2199.
[18] 陈俊, 何庆. 混合策略改进的麻雀优化算法[J]. 小型微型计算机系统, 2023, 44(7): 1470-1478.
CHEN J, HE Q. Mixed strategy to improved sparrow search algorithm[J]. Journal of Chinese Computer Systems, 2023, 44(7): 1470-1478.
[19] 毛清华, 张强, 毛承成. 混合正弦余弦算法和Lévy飞行的麻雀算法[J]. 山西大学学报(自然科学版), 2021, 44(6): 1086-1091.
MAO Q H, ZHANG Q, MAO C C. Mixing sine and cosine algorithm with Lévy flying chaotic sparrow algorithm[J]. Journal of Shanxi University(Natural Science Edition), 2021, 44(6): 1086-1091.
[20] 李爱莲, 全凌翔, 崔桂梅. 融合正余弦和柯西变异的麻雀搜索算法[J]. 计算机工程与应用, 2022, 58(3): 91-99.
LI A L, QUAN L X, CUI G M. A sparrow search algorithm combining sine-cosine and Cauchy mutation[J]. Computer Engineering and Applications, 2022, 58(3): 91-99.
[21] 王子恺, 黄学雨, 朱东林, 等. 融合边界处理机制的学习型麻雀搜索算法[J]. 北京航空航天大学学报, 2024(1): 286-298.
WANG Z K, HUANG X Y, ZHU D L, et al. Learning sparrow search algorithm that hybrids boundary processing mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024(1): 286-298.
[22] 毛清华, 张强. 融合柯西变异和反向学习的改进麻雀算法[J]. 计算机科学与探索, 2021, 15(6): 1155-1164.
MAO Q H, ZHANG Q. Improved sparrow algorithm combining Cauchy mutation and opposition-based learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1155-1164. |