计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (5): 47-61.DOI: 10.3778/j.issn.1002-8331.2304-0112
哈里旦木·阿布都克里木,冯珂,史亚庆,尼合买提·阿布都克力木,阿布都克力木·阿布力孜
出版日期:
2024-03-01
发布日期:
2024-03-01
Abudukelimu Halidanmu, FENG Ke, SHI Yaqing, Abudukelimu Nihemaiti, Abulizi Abudukelimu
Online:
2024-03-01
Published:
2024-03-01
摘要: 深度学习辅助诊断是减少临床中骨折漏诊误诊的有效方法。目前,深度学习在骨折诊断中的研究成果较多,但缺少对该领域研究现状进行总结分析的综述性文章。对领域内现有的文献进行总结;介绍骨折影像及相关数据集;系统地阐述三种基于深度学习的骨折辅助诊断方法,对各方法中包含的深度学习模型进行比较;按照不同骨折类型进行分类,对各类型骨折诊断中深度学习方法的应用进行展示。分析发现,深度学习在骨折诊断领域的应用和研究已取得显著进展,模型性能可与临床医生相当。但模型在训练时受数据集的影响较大,新的模型和技术较难得到实施。深度学习辅助骨折诊断仍有较大的发展空间。
哈里旦木·阿布都克里木, 冯珂, 史亚庆, 尼合买提·阿布都克力木, 阿布都克力木·阿布力孜. 深度学习在骨折诊断中的应用综述[J]. 计算机工程与应用, 2024, 60(5): 47-61.
Abudukelimu Halidanmu, FENG Ke, SHI Yaqing, Abudukelimu Nihemaiti, Abulizi Abudukelimu. Review of Applications of Deep Learning in Fracture Diagnosis[J]. Computer Engineering and Applications, 2024, 60(5): 47-61.
[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [2] OLCZAK J, FAHLBERG N, MAKI A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs: deep learning algorithms—are they on par with humans for diagnosing fractures[J]. Acta Orthopaedica, 2017, 88(6): 581-586. [3] DANKELMAN L H M, SCHILSTRA S, IJPMA F F A, et al. Artificial intelligence fracture recognition on computed tomography: review of literature and recommendations[J]. European Journal of Trauma and Emergency Surgery, 2022, 49: 681-691. [4] JOSHI D, SINGH T P. A survey of fracture detection techniques in bone X-ray images[J]. Artificial Intelligence Review, 2020, 53(6): 4475-4517. [5] KALMET P H S, SANDULEANU S, PRIMAKOV S, et al. Deep learning in fracture detection: a narrative review[J]. Acta Orthopaedical, 2020, 91(2): 215-220. [6] ALGHAITHI A, AL M S. Artificial intelligence application in bone fracture detection[J]. Journal of Musculoskeletal Surgery and Research, 2021, 5(1): 4-9. [7] GUERMAZI A, TANNOURY C, KOMPEL A J, et al. Improving radiographic fracture recognition performance and efficiency using artificial intelligence[J]. Radiology, 2022, 302(3): 627-636. [8] 张加尧, 叶哲伟. 智能医学时代骨科的发展[J]. 临床外科杂志, 2019, 27(1): 31-32. ZHANG J Y, YE Z W. The development of orthopedics in the era of intelligent medicine[J]. Journal of Clinical Surgery, 2019, 27(1): 31-32. [9] LI M, LI X, GUO Y, et al. Development and assessment of an individualized nomogram to predict colorectal cancer liver metastases[J]. Quantitative Imaging in Medicine and Surgery, 2020, 10(2): 397-414. [10] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. [11] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems, 2020: 6840-6851. [12] FEDERER S J, JONES G G. Artificial intelligence in orthopaedics: a scoping review[J]. PLoS One, 2021, 16(11): e0260471. [13] KIM D H, MACKINNON T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks[J]. Clinical Radiology, 2018, 73(5): 439-445. [14] JABBAR J, HUSSAIN M, MALIK H, et al. Deep learning based classification of wrist cracks from X-ray imaging[J]. Computers Materials & Continua, 2022, 73(1): 1827-1844. [15] THIAN Y L, LI Y, JAGMOHAN P, et al. Convolutional neural networks for automated fracture detection and localization on wrist radiographs[J]. Radiology: Artificial Intelligence, 2019, 1(1): e180001. [16] GALE W, OAKDEN-RAYNER L, CARNEIRO G, et al. Detecting hip fractures with radiologist-level performance using deep neural networks[J]. arXiv:1711.06504,2017. [17] URAKAWA T, TANAKA Y, GOTO S, et al. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network[J]. Skeletal Radiology, 2019, 48: 239-244. [18] ADAMS M, CHEN W, HOLCDORF D, et al. Computer vs human: deep learning versus perceptual training for the detection of neck of femur fractures[J]. Journal of Medical Imaging and Radiation Oncology, 2019, 63(1): 27-32. [19] CHENG C T, HO T Y, LEE T Y, et al. Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs[J]. European Radiology, 2019, 29(10): 5469-5477. [20] BAE J, YU S, OH J, et al. External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray[J]. Journal of Digital Imaging, 2021, 34(5): 1099-1109. [21] LIU P, LU L, CHEN Y, et al. Artificial intelligence to detect the femoral intertrochanteric fracture: The arrival of the intelligent-medicine era[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 927926. [22] LIN Z, DAI W, LAI Q Q, et al. Deep learning-based computed tomography applied to the diagnosis of rib fractures[J]. Journal of Radiation Research and Applied Sciences, 2023, 16(2): 100558. [23] KITAMURA G, CHUNG C Y, MOORE B E. Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation[J]. Journal of Digital Imaging, 2019, 32(4): 672-677. [24] RAMA J, NALINI C, KUMARAVEL A. Image pre-processing: enhance the performance of medical image classification using various data augmentation technique[J]. ACCENTS Transactions on Image Processing and Computer Vision, 2019, 5(14): 7-14. [25] YAHALOMI E, CHERNOFSKY M, WERMAN M. Detection of distal radius fractures trained by a small set of X-ray images and Faster R-CNN[J]. arXiv:1812.09025,2018. [26] MUTASA S, VARADA S, GOEL A, et al. Advanced deep learning techniques applied to automated femoral neck fracture detection and classification[J]. Journal of Digital Imaging, 2020, 33(5): 1209-1217. [27] HARDALA? F, UYSAL F, PEKER O, et al. Fracture detection in wrist X-ray images using deep learning-based object detection models[J]. Sensors, 2022, 22(3): 1285. [28] RUIKAR D D, SANTOSH K C, HEGADI R S, et al. 5K+ CT images on fractured limbs: a dataset for medical imaging research[J]. Journal of Medical Systems, 2021, 45(4): 1-11. [29] RAJPURKAR P, IRVIN J, BAGUL A, et al. Mura: large dataset for abnormality detection in musculoskeletal radiographs[J]. arXiv:1712.06957,2017. [30] JIN L, YANG J, KUANG K, et al. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet[J]. Ebio Medicine, 2020, 62: 103106. [31] MEINBERG E G, AGEL J, ROBERTS C S, et al. Fracture and dislocation classification compendium-2018[J]. Journal of Orthopaedic Trauma, 2018, 32: S1-S10. [32] KAZLEY J M, BANERJEE S, ABOUSAYED M M, et al. Classifications in brief: garden classification of femoral neck fractures[J]. Clinical Orthopaedics and Related Research, 2018, 476(2): 441-445. [33] CHUNG S W, HAN S S, LEE J W, et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm[J]. Acta Orthopaedica, 2018, 89(4): 468-473. [34] YU J S, YU S M, ERDAL B S, et al. Detection and localisation of hip fractures on anteroposterior radiographs with artificial intelligence: proof of concept[J]. Clinical Radiology, 2020, 75(3): 237.e1-237.e9. [35] TOBLER P, CYRIAC J, KOVACS B K, et al. AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size[J]. European Radiology, 2021, 31(9): 6816-6824. [36] XU F, XIONG Y, YE G, et al. Deep learning-based artificial intelligence model for classification of vertebral compression fractures: a multicenter diagnostic study[J]. Frontiers in Endocrinology, 2023, 14: 1025749. [37] CHEN H Y, HSU B W Y, YIN Y K, et al. Application of deep learning algorithm to detect and visualize vertebral fractures on plain frontal radiographs[J]. PLoS One, 2021, 16(1): e0245992. [38] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556,2014. [39] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015: 1-9. [40] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 770-778. [41] XIE S, GIRSHICK R, DOLLáR P, et al. Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu, 2017: 1492-1500. [42] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 4700-4708. [43] TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, California, 2019: 6105-6114. [44] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in neural Information Processing Systems, 2017. [45] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929,2020. [46] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, 2021: 10012-10022. [47] TANZI L, AUDISIO A, CIRRINCIONE G, et al. Vision Transformer for femur fracture classification[J]. Injury, 2022, 53(7): 2625-2634. [48] LINDSEY R, DALUISKI A, CHOPRA S, et al. Deep neural network improves fracture detection by clinicians[J]. Proceedings of the National Academy of Sciences, 2018, 115: 11591-11596. [49] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis &Machine Intelligence, 2017, 39(6): 1137-1149. [50] CHEN X, LIU Y. A classification method for thoracolumbar vertebral fractures due to basketball sports injury based on deep learning[J]. Computational and Mathematical Methods in Medicine, 2022, 2022: 8747487. [51] GAN K, XU D, LIN Y, et al. Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments [J]. Acta Orthopaedica, 2019, 90(4): 394-400. [52] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, Venice, 2017: 2980-2988. [53] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767,2018. [54] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scena rios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, 2021: 2778-2788. [55] KROGUE J D, CHENG K V, HWANG K M, et al. Automatic hip fracture identification and functional subclassification with deep learning[J]. Radiology: Artificial Intelligence, 2020, 2(2): e190023. [56] LI Y C, CHEN H H, LU H H S, et al. Can a deep-learning model for the automated detection of vertebral fractures approach the performance level of human subspecialists?[J]. Clinical Orthopaedics and Related Research, 2021, 479(7): 1598-1612. [57] GASMI I, CALINGHEN A, PARIENTI J J, et al. Comparison of diagnostic performance of a deep learning algorithm, emergency physicians, junior radiologists and senior radiologists in the detection of appendicular fractures in children[J]. Pediatric Radiology, 2023(1): 1-10. [58] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, Boston, 2015: 3431-3440. [59] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, 2015: 234-241. [60] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, Venice, 2017: 2961-2969. [61] ANTTILA T T, KARJALAINEN T V, M?KEL? T O, et al. Detecting distal radius fractures using a segmentation-based deep learning model[J]. Journal of Digital Imaging, 2023, 36(2): 679-687. [62] JOSHI D, SINGH T P, JOSHI A K. Deep learning-based localization and segmentation of wrist fractures on X-ray radiographs[J]. Neural Computing and Applications, 2022, 34 (21): 19061-19077. [63] TYSON S, HATEM S F. Easily missed fractures of the upper extremity[J]. Radiologic Clinics, 2015, 53(4): 717-736. [64] 杨锋, 丛日坤, 王卫国, 等. 基于深度学习的桡骨远端骨折自动分型研究[J]. 激光与光电子学进展, 2021, 58(12): 232-240. YANG F, CONG R K, WANG W G, et al. Research on automatic classification of distal radius fractures based on deep learning[J]. Laser & Optoelectronics Progress, 2021, 58(12): 232-240. [65] 杨锋. 基于X射线影像的计算机辅助诊断骨折研究[D]. 济南: 山东中医药大学, 2021. YANG F. Research on computer aided diagnosis of fracture based on X-ray image[D]. Ji’nan: Shandong University of Traditional Chinese Medicine, 2021. [66] 杨昆, 罗萍, 吕一品, 等. 一种基于GA-Faster R-CNN的掌指骨骨折计算机辅助诊断系统[J]. 河北大学学报(自然科学版), 2021, 41(4): 412-418. YANG K, LUO P, LYU Y P et al. A computer aided diagnosis system for metacarpal and phalangeal fracture based on GA-Faster R-CNN[J]. Journal of Hebei University (Natural Science Edition), 2021, 41(4): 412-418. [67] MIN H, RABI Y, WADHAWAN A, et al. Automatic classification of distal radius fracture using a two-stage ensemble deep learning framework[J]. Physical and Engineering Sciences in Medicine, 2023(1): 1-10. [68] JU R Y, CAI W. Fracture detection in pediatric wrist trauma X-ray images using YOLOv8 Algorithm[J]. arXiv:2304.05071,2023. [69] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017: 618-626. [70] BEYAZ S, A?ICI K, SüMER E. Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm approaches[J]. Joint Diseases and Related Surgery, 2020, 31(2): 175-183. [71] CHENG C T, WANG Y, CHEN H W, et al. A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs[J]. Nature Communications, 2021, 12 (1): 1066. [72] ASHKANI-ESFAHANI S, MOJAHED-YAZDI R, BHIMANI R, et al. Assessment of ankle fractures using deep learning algorithms and convolutional neural network[J]. Foot & Ankle Orthopaedics, 2022, 7(1). [73] OLCZAK J, EMILSON F, RAZAVIAN A, et al. Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification[J]. Acta Orthopaedical, 2020, 92(1): 102-108. [74] PRIJS J, LIAO Z, TO M S, et al. Development and external validation of automated detection, classification, and localization of ankle fractures: inside the black box of a convolutional neural network (CNN)[J]. European Journal of Trauma and Emergency Surgery, 2022, 22: 1-13. [75] 李静. 肋骨骨折临床治疗研究进展[J]. 中国城乡企业卫生, 2022, 37(8): 36-38. LI J. Research progress on clinical treatment of rib fracture[J]. Chinese Journal of Urban and Rural Enterprise Hygiene, 2022, 37(8): 36-38. [76] 刘继宽. 传统X射线与CT用于诊断肋骨骨折的临床准确性探讨[J]. 影像研究与医学应用, 2022, 6(8): 19-21. LIU J K. Clinical accuracy of traditional X-ray film and CT for the diagnosis of rib fractures[J]. Journal of Imaging Research and Medical Applications, 2022, 6(8): 19-21. [77] WEIKERT T, NOORDTZIJ L A, BREMERICH J, et al. Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography[J]. Korean Journal of Radiology, 2020, 21(7): 891-899. [78] ZHOU Q Q, WANG J, TANG W, et al. Automatic detection and classification of rib fractures on thoracic CT using convolutional neural network: accuracy and feasibility[J]. Korean Journal of Radiology, 2020, 21(7): 869-879. [79] ZHANG B, JIA C, WU R, et al. Improving rib fracture detection accuracy and reading efficiency with deep learning-based detection software: a clinical evaluation[J]. The British Journal of Radiology, 2021, 94: 20200870. [80] YAO L, GUAN X, SONG X, et al. Rib fracture detection system based on deep learning[J]. Scientific Reports, 2021, 11(1): 1-10. [81] KENDLER D L, BAUER D C, DAVISON K S, et al. Vertebral fractures: clinical importance and management[J]. The American Journal of Medicine, 2016, 129(2): 221.e1-221.e10. [82] 刘珂, 王奇政, 陈永晔, 等. 基于ResNet50深度学习模型鉴别脊柱良恶性骨折[J]. 临床放射学杂志, 2021, 40(12): 2350-2355. LIU K, WANG Q Z, CHEN Y Y, et al. Identification of benign and malignant spinal fractures based on the ResNet50 deep learning model[J]. Journal of Clinical Radiology, 2021, 40(12): 2350-2355. [83] SHA G, WU J, YU B. Detection of spinal fracture lesions based on improved YOLOv3[J]. Journal of Physics: Conference Series, 2020, 1576(1): 24-26. [84] 刘想, 谢辉辉, 许玉峰, 等. AI软件自动检出胸部CT图像上肋骨骨折的诊断效能研究[J]. 临床放射学杂志, 2021, 40(7): 1369-1374. LIU X, XIE H H, XU Y F, et al. Study on diagnostic efficiency of automatic detection of rib fracture on chest CT images with Al software[J]. Journal of Clinical Radiology, 2021, 40(7): 1369-1374. [85] REN M, YI P H. Deep learning detection of subtle fractures using staged algorithms to mimic radiologist search pattern[J]. Skeletal Radiology, 2022(1): 1-9. [86] WANG X, XU Z, TONG Y. et al. Detection and classification of mandibular fracture on CT scan using deep convolutional neural network[J]. Clin Oral Invest, 2022, 26: 4593-4601. [87] NAM Y, CHOI Y, KANG J, et al. Diagnosis of nasal bone fractures on plain radiographs via convolutional neural networks[J]. Scientific Reports, 2022, 12(1): 21510. [88] 陶建华, 陈聪, 张怀宇, 等. 鼻骨区骨折深度学习模型的建立和临床效能评估[J]. 放射学实践, 2021, 36(8): 959-964. TAO J H, CHEN C , ZHANG H Y, et al. Establishment and evaluation of the clinical efficacy of deep learning model for detection of nasal bone fracture on CT images[J]. Radiologic Practice, 2021, 36(8): 959-964. [89] JIN Z, LIU B, CHU Q, et al. SAFNet: a semi-anchor-free network with enhanced feature pyramid for object detection[J]. IEEE Transactions on Image Processing, 2020, 29: 9445-9457. [90] DURON L, DUCAROUGE A, GILLIBERT A, et al. Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study[J]. Radiology, 2021, 300(1): 120-129. [91] RAISUDDIN A M, VAATTOVAARA E, NEVALAINEN M, et al. Critical evaluation of deep neural networks for wrist fracture detection[J]. Scientific Reports, 2021, 11(1): 1-11. [92] KITAMURA G. Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection[J]. European Journal of Radiology, 2020, 130: 109139. [93] REN M, YI P H. Artificial intelligence in orthopedic implant model classification: a systematic review[J]. Skeletal Radiology, 2022, 51(2): 407-416. [94] TOMITA N, CHEUNG Y Y, HASSANPOUR S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans[J]. Computers in Biology and Medicine, 2018, 98: 8-15. [95] ARPITHA A, RANGARAJAN L. Computational techniques to segment and classify lumbar compression fractures[J]. La Radiologia Medica, 2020, 125(6): 551-560. [96] 刘想, 谢辉辉, 许玉峰, 等. 人工智能对提高放射科住院医生诊断胸部CT肋骨骨折一致性的价值[J]. 北京大学学报 (医学版), 2023, 55(4): 670-675. LIU X, XIE H H, XU Y F, et al. Value of artificial intelligence on the improvement of diagnostic consistency of radiology residents[J]. Journal of Peking University (Health Sciences), 2023, 55(4): 670-675. [97] 刘想, 谢辉辉, 许玉峰, 等. 人工智能在胸部创伤肋骨骨折CT诊断中应用的初步研究[J]. 上海交通大学学报 (医学版), 2021, 41(7): 920-925. LIU X, XIE H H, XU Y F, et al. Application of artificial intelligence to CT diagnosis of thoracic traumatic rib sites: a preliminary study[J]. Journal of Shanghai Jiaotong University (Medical Science), 2021, 41(7): 920-925. [98] 吴育鑫, 薛蕴菁, 段青, 等. 基于深度学习的计算机辅助诊断系统检出DR胸部正位片中的骨折[J]. 中国介入影像与治疗学, 2020, 17(11): 675-678. WU Y X, XUE Y J, DUAN Q, et al. Deep-learning based computer aided diagnosis system in detecting fractures on anteroposterior chest DR films[J]. Chinese Journal of Interventional Imaging and Therapy, 2020, 17(11): 675-678. [99] 张倩, 王大为, 隋时, 等. 深度学习计算机辅助诊断系统检测胸部DR肋骨骨折的验证性研究[J]. 中国临床医学影像杂志, 2022, 33(6): 430-434. ZHANG Q, WANG D W, SUI S, et al. A confirmatory study of deep learning based computer-aided diagnosis system for detecting chest DR rib fractures[J]. Journal of China Clinic Medical Imaging, 2022, 33(6): 430-434. [100] 谭辉, 田占雨, 潘宁, 等. 基于深度学习的计算机辅助诊断系统在提高急性肋骨骨折诊断效能上的价值[J]. 临床放射学杂志, 2020, 39(12): 2493-2497. TAN H, TIAN Z Y, PAN N, et al. The value of deep learning-based computer aided diagnostic system in improving diagnostic performance of acute rib fractures[J]. Journal of Clinical Radiology, 2020, 39(12): 2493-2497. [101] 朱雅茹, 祁良, 徐磊, 等. 人工智能软件辅助诊断新鲜肋骨骨折的效能评估[J]. 南京医科大学学报 (自然科学版), 2022, 42(2): 227-232. ZHU Y R, QI L, XU L, et al. Effectiveness evaluation of artificial intelligence system in the diagnosis of fresh rib fractures[J]. Journal of Nanjing Medical University (Natural Sciences), 2022, 42(2): 227-232. [102] ZECH J R, SANTOMARTINO S M, YI P H. Artificial intelligence (AI) for fracture diagnosis: an overview of current products and considerations for clinical adoption, from the AJR special series on AI applications[J]. AJR. American Journal of Roentgenology, 2022, 219(6): 869-878. [103] 郑奕. 医疗器械行业的市场投资与发展机遇[J]. 张江科技评论, 2020, 19(2): 62-65. ZHENG Y. Market investment and development opportunities of medical device industry[J]. Zhangjiang Technology Review, 2020, 19(2): 62-65. |
[1] | 周伯俊, 陈峙宇. 基于深度元学习的小样本图像分类研究综述[J]. 计算机工程与应用, 2024, 60(8): 1-15. |
[2] | 孙石磊, 李明, 刘静, 马金刚, 陈天真. 深度学习在糖尿病视网膜病变分类领域的研究进展[J]. 计算机工程与应用, 2024, 60(8): 16-30. |
[3] | 汪维泰, 王晓强, 李雷孝, 陶乙豪, 林浩. 时空图神经网络在交通流预测研究中的构建与应用综述[J]. 计算机工程与应用, 2024, 60(8): 31-45. |
[4] | 谢威宇, 张强. 基于深度学习的图像中无人机与飞鸟检测研究综述[J]. 计算机工程与应用, 2024, 60(8): 46-55. |
[5] | 周定威, 扈静, 张良锐, 段飞亚. 面向目标检测的数据集标签遗漏的协同修正技术[J]. 计算机工程与应用, 2024, 60(8): 267-273. |
[6] | 常禧龙, 梁琨, 李文涛. 深度学习优化器进展综述[J]. 计算机工程与应用, 2024, 60(7): 1-12. |
[7] | 周钰童, 马志强, 许璧麒, 贾文超, 吕凯, 刘佳. 基于深度学习的对话情绪生成研究综述[J]. 计算机工程与应用, 2024, 60(7): 13-25. |
[8] | 姜良, 张程, 魏德健, 曹慧, 杜昱峥. 深度学习在骨质疏松辅助诊断中的应用[J]. 计算机工程与应用, 2024, 60(7): 26-40. |
[9] | 刘建华, 王楠, 白明辰. 手机室内场景要素实例化现实增强方法研究进展[J]. 计算机工程与应用, 2024, 60(7): 58-69. |
[10] | 郝志峰, 刘俊, 温雯, 蔡瑞初. 基于多序列隐关系的时序事件预测[J]. 计算机工程与应用, 2024, 60(7): 119-127. |
[11] | 袁婧, 潘甦, 谢浩, 徐文鹏. 融合投资者情绪的S_AM_BiLSTM股价预测模型[J]. 计算机工程与应用, 2024, 60(7): 274-281. |
[12] | 谭振林, 刘子良, 黄蔼权, 陈荟慧, 钟勇. 掌静脉识别的深度学习方法综述[J]. 计算机工程与应用, 2024, 60(6): 55-67. |
[13] | 赖镜安, 陈紫强, 孙宗威, 裴庆祺. 基于YOLOv5的轻量级雾天目标检测方法[J]. 计算机工程与应用, 2024, 60(6): 78-88. |
[14] | 阮慧, 黄细霞, 李登峰, 王乐. 滚动轴承细粒度故障诊断研究[J]. 计算机工程与应用, 2024, 60(6): 312-322. |
[15] | 苏晨阳, 武文红, 牛恒茂, 石宝, 郝旭, 王嘉敏, 高勒, 汪维泰. 深度学习的工人多种不安全行为识别方法综述[J]. 计算机工程与应用, 2024, 60(5): 30-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||