[1] FAN J, LIU Z, Mao X, et al. Global trends in the incidence and mortality of esophageal cancer from 1990 to 2017[J]. Cancer Medicine, 2020, 9(18): 6875-6887.
[2] UHLENHOPP D J, THEN E O, SUNKARA T, et al. Epidemiology of esophageal cancer: update in global trends, etiology and risk factors[J]. Clinical Journal of Gastroenterology, 2020, 13(6): 1010-1021.
[3] FITZMAURICE C. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 2006 to 2016: a systematic analysis for the global burden of disease study[J]. Journal of Clinical Oncology, 2018, 36: 1568.
[4] ODA I, SHIMIZU Y, YOSHIO T, et al. Long-term outcome of endoscopic resection for intramucosal esophageal squamous cell cancer: a secondary analysis of the Japan esophageal cohort study[J]. Endoscopy, 2020, 52(11): 967-975.
[5] KAREEM O S, ABDULAZEEZ A M, ZEEBAREE D Q. Skin lesions classification using deep learning techniques: review[J]. Asian Journal of Research in Computer Science,2021, 9(1): 1-22.
[6] CHEN L B, WAN J J, CHEN T Y, et al. A self-attention based Faster R-CNN for polyp detection from colonoscopy images[J]. Biomedical Signal Processing and Control, 2021, 70: 103019.
[7] LU S Y, WANG S H, ZHANG Y D, SAFNet: a deep spatial attention network with classifier fusion for breast cancer detection[J]. Computers in Biology and Medicine, 2022, 148: 105812.
[8] GHATWARY N, ZOLGHARNI M, YE X. Early esophageal adenocarcinoma detection using deep learning methods[J]. International Journal of Computer Assisted Radiology and Surgery, 2019, 14(4): 611-621.
[9] GHATWARY N, YE X, ZOLGHARNI M. Esophageal abnormality detection using DenseNet based faster R-CNN with Gabor features[J]. IEEE Access, 2019, 7: 84374-84385.
[10] HORIE Y, YOSHIO T, AOYAMA K, et al. Diagnostic outcomes of esophageal cancer by artificial intelligence using convolutional neural networks[J]. Gastrointestinal Endoscopy, 2019, 89(1): 25-32.
[11] 王士旭, 柯岩, 刘雨蒙, 等. 内镜下早期食管癌及癌前病变识别人工智能YOLOv5l模型的建立及临床验证[J]. 中华肿瘤杂志, 2022, 44(5): 395-401.
WANG S X, KE Y, LIU Y M, et al. Establishment and clinical validation of an artificial intelligence YOLOv51 model for the detection of precancerous lesions and superficial esophageal cancer in endoscopic procedure[J]. Chinese Journal of Cancer, 2021, 44(5): 395-401.
[12] WU Z, GE R, WEN M, et al. ELNet: automatic classification and segmentation for esophageal lesions using convolutional neural network[J]. Medical Image Analysis, 2021, 67: 101838.
[13] SUN P, ZHANG R, JIANG Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, 2021: 14454-14463.
[14] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 213-229.
[15] LIN T-Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936-944.
[16] CAI Z W, NUNO V. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
[17] LUAN S, CHEN C, ZHANG B, et al. Gabor convolutional networks[J]. IEEE Transactions on Image Processing, 2018, 27(9): 4357-4366.
[18] SARWAR S S, PANDA P, ROY K. Gabor filter assisted energy efficient fast learning convolutional neural networks[C]//Proceedings of the 2017 IEEE ACM International Symposium on Low Power Electronics and Design, 2017: 1-6.
[19] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[20] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[21] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[22] CHENG J F, YU J Z, YU G, et al. TOOD: task-aligned one-stage object detection[C]//Proceedings of the 2021 International Conference on Computer Vision, 2021: 3490-3499.
[23] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |