[1] 梁云辉, 甘舰文, 陈艳, 等. 基于对偶流形重排序的无监督特征选择算法[J]. 计算机科学, 2023, 50(11): 1-10.
LIANG Y H, GAN J W, CHEN Y, et al. Unsupervised feature selection algorithm based on dual manifold re-ranking[J]. Computer Science, 2023, 50(11): 1-10.
[2] 张俐, 陈小波. 动态加权条件互信息的特征选择算法[J]. 电子与信息学报, 2021, 43(10): 3028-3034.
ZHANG L, CHEN X B. Feature selection algorithm for dynamically weighted conditional mutual information[J]. Journal of Electronics & Information Technology, 2021, 43(10): 3028-3034.
[3] BENNASAR M, HICKS Y, SETCHI R. Feature selection using joint mutual information maximisation[J]. Expert Systems with Applications, 2015, 42(22): 8520-8532.
[4] YIN K X, XIE A F, ZHAI J R, et al. Dynamic interaction-based feature selection algorithm for maximal relevance minimal redundancy[J]. Applied Intelligence, 2022, 53(4): 1-17.
[5] 姜文煊, 段友祥, 孙歧峰. 基于交互信息的混合特征选择算法[J]. 应用科学学报, 2021, 39(4): 545-558.
JIANG W X, DUAN Y X, SUN Q F. Hybrid feature selection algorithm based on mutual information[J]. Journal of Applied Sciences, 2021, 39(4): 545-558.
[6] GAO W F, HU L, ZHANG P. Feature redundancy term variation for mutual information-based feature selection[J]. Applied Intelligence, 2020, 50(4): 1272-1288.
[7] ZHAO S J, WANG M C, MA S L, et al. A feature selection method via relevant-redundant weight[J]. Expert Systems with Applications, 2022, 207: 117923.
[8] MA X A, XU H, JU C. Class-specific feature selection via maximal dynamic correlation change and minimal redundancy[J]. Expert Systems with Applications, 2023, 229: 120455.
[9] YIN K, ZHAI J, XIE A, et al. Feature selection using max dynamic relevancy and min redundancy[J]. Pattern Analysis and Applications, 2023, 26(2): 631-643.
[10] ZHANG P, GAO W F, HU J C, et al. A conditional-weight joint relevance metric for feature relevancy term[J]. Engineering Applications of Artificial Intelligence, 2021, 106(4): 104481.
[11] ZHANG L. A feature selection method using conditional correlation dispersion and redundancy analysis[J]. Neural Processing Letters, 2023, 55(6): 7175-7209.
[12] ZHANG P, GAO W F. Feature selection considering uncertainty change ratio of the class label[J]. Applied Soft Computing, 2020, 95(4): 106537.
[13] 陈永波, 李巧勤, 刘勇国. 基于动态相关性的特征选择算法[J]. 计算机应用, 2022, 42(1): 109-114.
CHEN Y B, LI Q Q, LIU Y G. Dynamic relevance based feature selection algorithm[J]. Journal of Computer Applications, 2022, 42(1): 109-114.
[14] LI J D, CHENG K W, WANG S H, et al. Feature selection: a data perspective[J]. ACM Computing Surveys, 2017, 50(6): 1-45.
[15] 陈泽, 丁琳琳, 罗浩, 等. 基于改进小波分解和ELM的矿山微震事件识别方法[J]. 煤炭学报, 2020, 45(S2): 637-648.
CHEN Z, DING L L, LUO H, et al. Mine microseismic events classification based on improved wavelet decomposition and ELM[J]. Journal of China Coal Society, 2020, 45(S2): 637-648.
[16] 樊鑫, 程建远, 王云宏, 等. 基于小波散射分解变换的煤矿微震信号智能识别[J]. 煤炭学报, 2022, 47(7): 2722-2731.
FAN X, CHENG J Y, WANG Y H, et al. Intelligent recognition of coal mine microseismic signal based on wavelet scattering decomposition transform[J]. Journal of China Coal Society, 2022, 47(7): 2722-2731.
[17] 吴义文, 程铁栋, 易其文, 等. 基于经验小波变换的矿山微震信号识别研究[J]. 矿业安全与环保, 2020, 47(4): 39-44.
WU Y W, CHENG T D, YI Q W, et al. Research on mine microseismic signal recognition based on empirical wavelet transform[J]. Mining Safety & Environmental Protection, 2020, 47(4): 39-44.
[18] 程铁栋, 易其文, 吴义文, 等. 改进EWT_MPE模型在矿山微震信号特征提取中的应用[J]. 振动与冲击, 2021, 40(9): 92-101.
CHENG T D, YI Q W, WU Y W, et al. Application of improved EWT_MPE model in feature extraction of mine micro-seismic signals[J]. Journal of Vibration and Shock, 2021, 40(9): 92-101.
[19] 孟娟, 张家声, 李亚南. 基于改进EWT和LogitBoost集成分类器的地震事件分类识别算法[J]. 地震工程学报, 2022, 44(5): 1233-1242.
MENG J, ZHANG J S, LI Y N. Classification and recognition algorithm for earthquake events based on the improved EWT and LogitBoost ensemble classifier[J]. China Earthquake Engineering Journal, 2022, 44(5): 1233-1242. |