[1] 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247-261.
LIU Z Y, SUN M S, LIN Y K, et al. Knowledge representation learning: a review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261.
[2] BIZER C, LEHMANN J, KOBILAROV G, et al. DBpedia—a crystallization point for the Web of data[J]. Web Semantics Science Services & Agents on the World Wide Web, 2009, 7(3): 154-165.
[3] BOLLACKER K, COOK R, TUFTS P. Freebase: a shared database of structured general human knowledge[C]//Proceedings of the 22nd AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI, 2007: 1962-1963.
[4] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a large ontology from Wikipedia and WordNet[J]. Journal of Web Semantics, 2007, 6(3): 203-217.
[5] 张天成, 田雪, 孙相会, 等. 知识图谱嵌入技术研究综述[J]. 软件学报, 2021, 34(1): 277-311.
ZHANG T C, TIAN X, SUN X H, et al. Overview on knowledge graph embedding technology research[J]. Journal of Software, 2021, 34(1): 277-311.
[6] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//The Semantic Web: 15th International Conference, Heraklion, Crete, Greece, June 3-7, 2018: 593-607.
[7] YE R, LI X, FANG Y, et al. A vectorized relational graph convolutional network for multi-relational network alignment[C]//Proceedings of the IJCAI, 2019: 4135-4141.
[8] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[C]//Proceedings of the International Conference on Learning Representations (ICLR), 2020: 1-15.
[9] SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, Honolulu, Hawaii, USA, 2019: 3060-3067.
[10] SUN Z, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]//International Conference on Learning Representations, 2018.
[11] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013: 2287-2295.
[12] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2014.
[13] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015: 2181-2187.
[14] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the ICML, 2011: 271-280.
[15] YANG B, YIH S W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceedings of the International Conference on Learning Representations (ICLR), 2015: 1-13.
[16] NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016.
[17] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 1811-1818.
[18] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]//NAACL HLT 2018: 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies-Proceedings of the Conference, 2018: 327-333.
[19] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in knowledge graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 4710-4723.
[20] ZHAO X, JIA Y, LI A, et al. Target relational attention-oriented knowledge graph reasoning[J]. Neurocomputing, 2021, 461: 577-586.
[21] WANG Y, WANG H, HE J, et al. TAGAT: type-aware graph attention networks for reasoning over knowledge graphs[J]. Knowledge-Based Systems, 2021, 233: 107500.
[22] TOUTANOVA K, CHEN D, PANTEL P, et al. Representing text for joint embedding of text and knowledge bases[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015: 1499-1509.
[23] SUN Z, VASHISHTH S, SANYAL S, et al. A re-evaluation of knowledge graph completion methods[J]. arXiv:1911.03903, 2019. |