计算机工程与应用 ›› 2024, Vol. 60 ›› Issue (2): 63-76.DOI: 10.3778/j.issn.1002-8331.2305-0203
唐闻涛,胡泽林
出版日期:
2024-01-15
发布日期:
2024-01-15
TANG Wentao, HU Zelin
Online:
2024-01-15
Published:
2024-01-15
摘要: 知识图谱是大数据时代下知识工程的关键技术。利用知识图谱强大的语义理解和知识组织能力,可以解决现代化农业建设中农业知识分散无序、知识覆盖范围不足等问题针对农业领域数据复杂、专业性强等特点,给出了农业知识图谱的构建方法与框架;综述了农业知识图谱构建中本体构建、知识抽取、知识融合以及知识推理四个关键技术的国内外研究现状;系统梳理了农业知识图谱在决策支持、智能问答与推荐系统的应用;最后,介绍了几个具体的农业知识图谱实例。根据农业知识图谱的研究现状,对其未来的研究方向进行了展望。
唐闻涛, 胡泽林. 农业知识图谱研究综述[J]. 计算机工程与应用, 2024, 60(2): 63-76.
TANG Wentao, HU Zelin. Survey of Agricultural Knowledge Graph[J]. Computer Engineering and Applications, 2024, 60(2): 63-76.
[1] SHETH A, THIRUNARAYAN K. Semantics empowered web 3.0: managing enterprise, social, sensor, and clound-based data and services for advanced applications[M]. San Rafael, CA: Morgan & Claypool Publishers, 2013. [2] SHADBOLT N, BERNERS L T, HALL W. The semantic web revisited[J]. IEEE Intelligent Systems, 2006, 21(3): 96-101. [3] SINGHAL A. Introducing the knowledge graph: things, not strings[EB/OL]. (2012-05-16)[2023-06-05]. https://blog.google/products/search/introducing-knowledge-graph-things-not/. [4] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data, 2008: 1247-1250. [5] SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a large ontology from wikipedia and wordnet[J]. Journal of Web Semantics, 2008, 6(3): 203-217. [6] NIU X, SUN X R, WANG H F, et al. Zhishi. me-weaving Chinese linking open data[C]//Proceedings of the 10th International Semantic Web Conference, 2011: 205-220. [7] XU B, LIANG J, XIE C, et al. CN-dbpedia2: an extraction and verification framework for enriching chinese encyclopedia knowledge base[J]. Data Intelligence, 2019, 1(3): 244-261. [8] 蒋川宇, 韩翔宇, 杨文蕊, 等. 医学知识图谱研究与应用综述[J]. 计算机科学, 2023, 50(3): 83-93. JIANG Y C, HAN X Y, YANG W R, et al. Survey of medical knowledge graph research and application[J]. Computer Science, 2023, 50(3): 83-93. [9] 范媛媛, 李忠民. 中文医学知识图谱研究及应用进展[J]. 计算机科学与探索, 2022, 16(10): 2219-2233. FAN Y Y, LI Z M. Research and application progress of chinese medical knowledge graph[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2219-2233. [10] 江旭晖, 沈英汉, 李子健, 等. 社交知识图谱研究综述[J]. 计算机学报, 2023, 46(2): 304-330. JIANG X H, SHEN Y H, LI Z J, et al. A survey of social knowledge graph[J]. Chinese Journal of Computers, 2023, 46(2): 304-330. [11] 邱凌, 张安思, 李少波, 等. 航空制造知识图谱构建研究综述[J]. 计算机应用研究, 2022, 39(4): 968-977. QIU L, ZHANG A S, LI S B, et al. Survey on building knowledge graphs for aerospace manufacturing[J]. Application Research of Computers, 2022, 39(4): 968-977. [12] 邱云飞, 邢浩然, 李刚. 矿井建设知识图谱构建研究综述[J]. 计算机工程与应用, 2023, 59(7): 64-79. QIU Y F, XING H R, LI G. Summary of research on the construction of knowledge graph for mine construction[J]. Computer Engineering and Applications, 2023, 59(7): 64-79. [13] LIU X X, BAI X S, WANG L H, et al. Review and trend analysis of knowledge graphs for crop pest and diseases[J]. IEEE Access, 2019, 7: 62251-62264. [14] MIN W Q, LIU C L, XU L Y, et al. Applications of knowledge graphs for food science and industry[J]. Patterns, 2022, 3(5): 100484. [15] MOL E A N, KUMAR M B S. Review on knowledge extraction from text and scope in agriculture domain[J]. Artificial Intelligence Review, 2022, 56(5): 4403-4445. [16] QIAO B, FANG K, CHEN Y M, et al. Building thesaurus-based knowledge graph based on schema layer[J]. Cluster Computing, 2017, 20(1): 81-91. [17] 赵宇博, 张丽萍, 闫盛, 等. 个性化学习中学科知识图谱构建与应用综述[J]. 计算机工程与应用, 2023, 59(10): 1-21. ZHAO Y B, ZHANG L P, YAN S, et al. Construction and application of discipline knowledge graph in personalized learning[J]. Computer Engineering and Applications, 2023, 59(10): 1-21. [18] 魏圆圆. 基于本体论的农业知识建模及推理研究[D]. 合肥: 中国科学技术大学, 2011. WEI Y Y. Research of ontology-based agricultural knowledge modeling and reasoning[D]. Hefei: University of Science and Technology of China, 2011. [19] 李贯峰, 李卫军. 一个基于枸杞病虫害领域本体的语义检索模型[J]. 计算机技术与发展, 2017, 27(9): 48-52. LI G F, LI W J. A semantic retrieval model with domain ontology based on wolfberry disease and pets[J]. Computer Technology and Development, 2017, 27(9): 48-52. [20] 许多, 鲁旺平, 许瑞清, 等. 基于农业时空多模态知识图谱的水稻精准施肥决策方法[J]. 华中农业大学学报, 2023, 42(3): 281-292. XU D, LU W P, XU R Q, et al. A method of deciding the precision fertilization of rice based on the spatio-temporal multi-modal knowledge graph of agriculture[J]. Journal of Huazhong Agricultural University, 2023, 42(3): 281-292. [21] DEEPA R, VIGNESHWARI S. An effective automated ontology construction based onthe agriculture domain[J]. ETRI Journal, 2022, 44(4): 573-587. [22] SAAT N L Y, NOAH S M. Rule-based approach for automatic ontology population of agriculture domain[J]. Inform Technology, 2016, 15(2): 46-51. [23] WANG Y, WANG Y, WANG J, et al. An ontology-based approach to integration of hilly citrus production knowledge[J]. Computers and Electronics in Agriculture, 2015, 113: 24-43. [24] 刘乾凝. 面向数字人文的都市农业本体的构建[J]. 图书馆杂志, 2019, 38(8): 53-58. LIU Q N. Construction of urban agriculture ontology oriented to digital humanities[J]. Library Journal, 2019, 38(8): 53-58. [25] 刘桂锋, 杨倩, 刘琼. 农业科学数据集的本体构建与可视化研究—以“棉花病害防治”领域为例[J]. 情报杂志, 2022, 41(9): 143-149. LIU G F, YANG Q, LIU Q. Ontology construction and visualization display of agricultural science data set-taking the field of “Cotton Disease Control” as an example[J]. Journal of Intelligence, 2022, 41(9): 143-149. [26] 王昊奋, 漆桂林, 陈华钧. 知识图谱: 方法、实践与应用[M]. 北京: 电子工业出版社, 2019. WANG H F, GUI Q L, CHEN H J. Knowledge graph: method, practice and application[M]. Beijing: Publishing House of Electronics Industry, 2019. [27] 田玲, 张谨川, 张晋豪, 等. 知识图谱综述——表示、构建、推理与知识超图理论[J]. 计算机应用, 2021, 41(8): 2161-2186. TIAN L, ZHANG J C, ZHANG J H, et al. Knowledge graph survey: representation, construction, reasoning and knowledge hypergraph theory[J]. Journal of Computer Applications, 2021, 41(8): 2161-2186. [28] EFTIMOV T, SELJAK B K, KOROSEC P. A rule-based named-entity recognition method for knowledge extraction of evidence-based dietary recommendations[J]. PLoS One, 2017, 12(6): e0179488. [29] CHATTERJEE N, KAUSHIK N. RENT: regular expression and NLP-based term extraction scheme for agricultural domain[C]//Proceedings of the International Conference on Data Engineering and Communication Technology, 2017: 511-522. [30] ZHOU G D. Recognizing names in biomedical texts using mutual information indepenence model and SVM plus sigmoid[J]. International Journal of Medical Informatics, 2006, 75(6): 456-467. [31] ZHANG J, SHEN D, ZHOU G D, et al. Enhancing HMM-based biomedical named entity recognition by studying special phenomena[J]. Journal of Biomedical Informatics, 2004, 37(6): 411-422. [32] HAO Z F, WANG H F, CAI R C, et al. Product named entity recognition for Chinese query questions based on a skip-chain CRF model[J]. Neural Computing and Applications, 2013, 23(2): 371-379. [33] 王春雨, 王芳. 基于条件随机场的农业命名实体识别研究[J]. 河北农业大学学报, 2014, 37(1): 132-135. WANG C Y, WANG F. Study on recognition of chinese agricultural named entity with conditional random fields[J]. Journal of Agricultural University of Hebei, 2014, 37(1): 132-135. [34] 李想, 魏小红, 贾璐, 等. 基于条件随机场的农作物病虫害及农药命名实体识别[J]. 农业机械学报, 2017, 48(S1): 178-185. LI X, WEI X H, JIA L, et al. Recognition of crops, diseases and pesticides named entities in chinese based on conditional random fields[J]. Transactions of the Chinese Society of Agricultural Machinery, 2017, 48(S1): 178-185. [35] LAMPLE G, BALLESTEROS M, SUBRAMANIAN S, et al. Neural architectures for named entity recognition[C]//Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics, 2016: 260-270. [36] 宋林鹏, 刘世洪, 王翠. 基于词向量+BiLSTM+CRF的农业技术需求文本实体提取[J]. 江苏农业科学, 2021, 49(5): 186-193. SONG L P, LIU S H, WANG C. Extraction of text entity of agricultural technology demand based on Word Vector+BiLSTM+CRF[J]. Jiangsu Agricultural Sciences, 2021, 49(5): 186-193. [37] 赵鹏飞, 赵春江, 吴华瑞, 等. 基于注意力机制的农业文本命名实体识别[J]. 农业机械学报, 2021, 52(1): 185-192. ZHAO P F, ZHAO C J, WU H R, et al. Named entity recognition of chinese agricultural text based on attention mechanism[J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(1): 185-192. [38] GUO X C, HAN Z, JIE S, et al. Chinese agricultural diseases and pests named entity recognition with multi-scale local context features and self-attention mechanism[J]. Computers and Electronics in Agriculture, 2020, 179: 105830. [39] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of Conference of the North American Chapter of the Association for Computational Linguistic, 2019: 4171-4186. [40] MENG F Q, YANG S S, WANG J D, et al. Creating knowledge graph of electric power equipment faults based on BERT-BiLSTM-CRF model[J]. Journal of Electrical Engineering & Technology, 2022, 17(4): 2507-2516. [41] ZHAO P F, WANG W, LIU H, et al. Recognition of the agricultural named entities with multifeature fusion based on ALBERT[J]. IEEE Access, 2022, 10: 98936-98943. [42] 韦紫君, 宋玲, 胡小春, 等. 基于实体级遮蔽BERT与BiLSTM-CRF的农业命名实体识别[J]. 农业工程学报, 2022, 38(15): 195-203. WEI Z J, SONG L, HU X C, et al. Named entity recognition of agricultural based entity-level masking BERT and BiLSTM-CRF[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 195-203. [43] LIU Z H, CHEN Y Y, DAI Y F, et al. Syntactic and semantic features based relation extraction in agriculture domain[C]//Proceedings of International Conference on Web Information Systems and Applications, 2018: 252-258 [44] 吴粤敏, 丁港归, 胡滨. 基于注意力机制的农业金融文本关系抽取研究[J]. 数据分析与知识发现, 2019, 3(5): 86-92. WU Y M, DING G G, HU B. Extracting relationship of agricultural financial texts with attention mechanism[J]. Data Analysis and Knowledge Discovery, 2019, 3(5): 86-92. [45] MINTZ M, BILLS S , SNOW R, et al. Distant supervision for relation extraction without labeled data[C]//Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP, 2009: 1003-1011. [46] ZENG D, LIU K, LAI S, et al. Relation classification via convolutional deep neural network[C]//Proceedings of the 25th International Conference on Computational Linguistics, 2014: 2335-2344. [47] 乐毅, 王文宇, 张凯, 等. 基于多层注意力机制的农业病虫害远程监督关系抽取研究[J]. 安徽农业大学学报, 2020, 47(4): 682-686. YUE Y, WANG W Y, ZHANG K, et al. Agricultural pest and disease relation extraction based on multi-attention mechanism and distant supervision[J]. Journal of Anhui Agricultural University, 2020, 47(4): 682-686. [48] 唐璐. 基于知识抽取的徽茶知识图谱构建与应用[D]. 合肥: 安徽农业大学, 2022. TANG L. Construction and application of knowledge graph for anhui tea based on knowledge extraction[D]. Hefei: Anhui Agricultural University, 2022. [49] 董哲, 王亚, 马传孝, 等. 融合对抗训练和胶囊网络的食品安全关系抽取模型[J]. 科学技术与工程, 2022, 22(23): 10162-10168. DONG Z, WANG Y, MA C X, et al. Food safety relation extraction model based on adversarial training and capsule network[J]. Science Technology and Engineering, 2022, 22(23): 10162-10168. [50] QIAO B, ZOU Z Y, HUANG Y, et al. A joint model for entity and relation extraction based on BERT[J]. Neural Computing and Applications, 2021, 34(5): 3471-3481. [51] 沈利言, 姜海燕, 胡滨, 等. 水稻病虫草害与药剂实体关系联合抽取算法[J]. 南京农业大学学报, 2020, 43(6): 1151-1161. SHEN L Y, JIANG H Y, HU B, et al. A study on joint entity recognition and relation extraction for rice diseases pests weeds and drugs[J]. Journal of Nanjing Agricultural University, 2020, 43(6): 1151-1161. [52] 胡滨, 汤保虎, 姜海燕, 等. 家禽诊疗文本多实体关系联合抽取模型研究[J]. 农业机械学报, 2021, 52(6): 268-276. HU B, TANG B H, JIANG H Y, et al. Joint extraction model of multi-entity elations for poultry diagnosis and treatment text[J]. Transactions of the Chinese Society of Agricultural Machinery, 2021, 52(6): 268-276. [53] 吴赛赛, 梁晓贺, 谢能付, 等. 面向领域实体关系联合抽取的标注方法[J]. 计算机应用, 2021, 41(10): 2858-2863. WU S S, LIANG X X, XIE N F, et al. Annotation method for joint extraction of domain-oriented entities and relations[J]. Journal of Computer Applications, 2021, 41(10): 2858-2863. [54] 赵瑞雪, 杨晨雪, 郑建华, 等. 农业智能知识服务研究现状及展望[J]. 智慧农业, 2022, 4(4): 105-125. ZHAO R X, YANG C X, ZHENG J H, et al. Agricultural intelligent knowledge service: overview and future perspectives[J]. Smart Agriculture, 2022, 4(4): 105-125. [55] 谢能付. 基于农业本体和融合规则的知识融合框架研究[J]. 安徽农业科学, 2013, 41(1): 395-397. XIE N F. Knowledge fusion framework based on agricultural ontology and fusion rules[J]. Journal of Anhui Agricultural Sciences, 2013, 41(1): 395-397. [56] SUAREZ F M C, GOMEZ P A, FERNANDEZ L M. The NeOn methodology framework: a scenario-based methodology for ontology development[J]. Applied Ontology, 2015, 10(2): 107-145. [57] MULJARTO A R, SALMON J M, CHARNOMORDIC B, et al. A generic ontological network for Agri-food experiment integration-application to viticulture and winemaking[J]. Computers and Electronics in Agriculture, 2017, 140: 433-442. [58] ZHANG L Y, REN J D, LI X W. OIM-SM: a method for ontology integration based on semantic mapping[J]. Journal of Intelligent & Fuzzy Systems, 2017, 32(3): 1983-1995. [59] 贾丙静. 基于表示学习的实体识别和链接关键技术研究[D]. 北京: 北京邮电大学, 2021. JIA B J. Research on key technologies of named entity recognition and linking based on representation learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2021. [60] HUANG H, Heck L, JI H. Leveraging deep neural networks and knowledge graphs for entity disambiguation[J]. arXiv:1504.07678, 2015. [61] 夏迎春. 基于知识图谱的农业知识服务系统研究[D]. 合肥: 安徽农业大学, 2018. XIA Y C. Agriculture knowledge service system based on knowledge graph[D]. Hefei: Anhui Agricultural University, 2018. [62] 杨洁. 基于本体的柑橘病虫害知识建模及推理研究[D]. 武汉: 华中师范大学, 2014. YANG J. Research on knowledge modeling and reasoning ontology-based of citrus disease and pests[D]. Wuhan: Central China Normal University, 2014. [63] 牟向伟, 陈燕, 曹妍. 农产品冷链 HACCP 管理体系知识建模与推理[J]. 农业工程学报, 2016, 32(2): 300-308. MU X W, CHEN Y, CAO Y. HACCP knowledge modeling and reasoning for agricultural products cold-chain logistics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(2): 300-308. [64] 戈为溪, 周俊, 袁立存, 等. 基于知识图谱与案例推理的水稻精准施肥推荐模型[J]. 农业工程学报, 2023, 39(2): 126-133. GE W X, ZHOU J, YUAN L C, et al. Recommendation model for rice precision fertilization using knowledge graph and case-based reasoning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(2): 126-133. [65] 吴安捷. 基于PPO强化学习算法的农业领域知识图谱推理方法研究[D]. 合肥: 安徽农业大学, 2021. WU A J. Research on the reasoning method of agricultural knowledge graph based on proximal policy optimization[D]. Hefei: Anhui Agricultural University, 2021. [66] 王亦斌, 孙涛, 梁雪春, 等. 基于EMD-LSTM模型的河流水量水位预测[J]. 水利水电科技进展, 2020, 40(6): 40-47. WANG Y B, SUN T, LIANG X C, et al. Prediction of river water flow and water level based on EMD-LSTM model[J]. Advances in Science and Technology of Water Resources, 2020, 40(6): 40-47. [67] 王献锋, 张传雷, 张善文, 等. 基于自适应判别深度置信网络的棉花病虫害预测[J]. 农业工程学报, 2018, 34(14): 157-164. WANG X F, ZHANG C L, ZHANG S W, et al. Forecasting of cotton diseases and pests based on adaptive discriminant deep belief network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 157-164. [68] 张善文, 王振, 王祖良. 结合知识图谱与双向长短时记忆网络的小麦条锈病预测[J]. 农业工程学报, 2020, 36(12): 172-178. ZHANG S W, WANG Z, WANG Z L. Prediction of wheat stripe rust disease by combining knowledge graph and bidirectional long short term memory network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 172-178. [69] YAN W J, ZHANG Z S, ZHANG Q C, et al. Deep data analysis-based agricultural products management for smart public healthcare[J]. Frontiers in Public Health, 2022, 10: 847252. [70] LI P P, HAO H J, ZHANG Z, et al. A field study to estimate heavy metal concentrations in a soil-rice system: Application of graph neural networks[J]. Science of the total environment, 2022, 832: 155099. [71] 王萌, 王昊奋, 李博涵, 等. 新一代知识图谱关键技术综述[J]. 计算机研究与发展, 2022, 59(9): 1947-1965. WANG M, WANG H F, LI B H, et al. Survey on key technology of new generation knowledge graph[J]. Journal of Computer Research and Development, 2022, 59(9): 1947-1965. [72] 王艺, 王英, 原野, 等. 基于语义本体的柑橘肥水管理决策支持系统[J]. 农业工程学报2014, 30(9): 93-101. WANG Y, WANG Y, YUAN Y, et al. A decision support system for fertilization and irrigation management of cit-rus based on semantic ontology[J]. Transactions of the Chinese Society of Agricultural Engineering 2014, 30(9): 93-101. [73] HE J L, WANG J L, HE D X, et al. The design and implementation of an integrated optimal fertilization decision support system[J]. Mathematical and Computer Modelling, 2010, 54(3): 1167-1174. [74] 于合龙, 沈金梦, 毕春光, 等. 基于知识图谱的水稻病虫害智能诊断系统[J]. 华南农业大学学报, 2021, 42(5): 105-116. YU H L, SHEN J M, BI C G, et al. Intelligent diagnostic system for rice diseases and pests based on knowledge graph[J]. Journal of South China Agricultural University, 2021, 42(5): 105-116. [75] WANG H D, SHEN W Z, ZHANG Y, et al. Diagnosis of dairy cow diseases by knowledge-driven deep learning based on the text reports of illness state[J]. Computers and Electronics in Agriculture, 2023, 205: 107564. [76] 肖乐, 李家馨, 葛亮, 等. 面向粮情决策支持的知识图谱构建研究[J]. 中国粮油学报, 2022, 37(10): 29-37. XIAO L, LI J X, GE L, et al. Knowledge graph construction for decision support of grain situation[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(10): 29-37. [77] 史运涛, 刘召, 李书钦, 等. 基于知识图谱注意力网络的食品安全风险评估模型[J]. 食品工业, 2021, 42(12): 471-475. SHI Y T, LIU Z, LI S Q, et al. Food Safety risk assessment model based on knowledge graph attention network[J]. The Food Industry, 2021, 42(12): 471-475. [78] 张朝正, 陈婷, 潘登, 等. 冬奥会食品供应链有害因子知识图谱和智能化快筛技术研究[J]. 中国食品卫生杂志, 2022, 34(5): 884-888. ZHANG C Z, CHEN T, PAN D, et al. Knowledge map and intelligent rapid screening technology of harmful factors in food supply chain of Winter Olympics[J]. Chinese Journal of Food Hygiene, 2022, 34(5): 884-888. [79] XIA Y C, SUN N, WANG H, et al. Research on knowledge question answering system for agriculture disease and pets based on knowledge graph[J]. Journal of Nonlinear and Convex Analysis, 2020, 21(7): 1487-1496. [80] WANG H R Q, ZHU H J, WU H R, et al. A densely con-nected GRU neural network based on coattention mechanism for chinese rice-related question similarity matching[J]. Agronomy, 2021, 11(7): 1307. [81] 王俊. 基于知识图谱的饮食健康知识问答系统[D]. 南昌: 南昌大学, 2022. WANG J. Diet and health knowledge question answering system based on knowledge graph[D]. Nanchang: Nanchang University, 2022. [82] LAN Y B, GUO Y Q, CHEN Q Z, et al. Visual question answering model for fruit tree disease decision-making based on multimodal deep learning[J]. Frontiers in Plant Science, 2023, 13: 1064399. [83] 孙琳. 基于知识图谱的农业在线信息资源推荐系统研究[D]. 长春: 吉林农业大学, 2021. SUN L. Research on agricultural online information resource recommendation system based on knowledge graph[D]. Changchun: Jilin Agricultural University, 2021. [84] 唐柳. 基于知识图谱的个性化农业新闻推荐系统研究[D]. 合肥: 安徽农业大学, 2022. TANG L. Research on personalized agricultural news recommendation system based on knowledge graph[D]. Hefei: Anhui Agricultural University, 2022. [85] ZOU Y D, PAN S H, YANG F, et al. Precise recommendation method of suitable planting areas of maize varieties based on knowledge graph[J]. Agriculture, 2023, 13(3): 526. [86] CHEN Y, KUANG J, CHENG D, et al. AgriKG: an agricultural knowledge graph and its applications[C]//Database Systems for Advanced Applications, 2019: 533-537. [87] JIN Y C, LIU J Z, WANG X H, et al. Technology recommendations for an innovative agricultural robot design based on technology knowledge graphs[J]. Processes, 2021, 9(11): 1905. [88] LEI Z, HAQ A U, ZEB A, et al. Is the suggested food your desired?: multi-modal recipe recommendation with demand-based knowledge graph[J]. Expert Systems with Applications, 2021, 186(6): 115708. [89] 张嘉宇, 郭玫, 张永亮, 等. 细粒度苹果病虫害知识图谱构建研究[J]. 计算机工程与应用, 2023, 59(5): 270-280. ZHANG J Y, GUO M, ZHANG Y L, et al. Research on construction of fine-grained knowledge graph of apple diseases and pests[J]. Computer Engineering and Applications, 2023, 59(5): 270-280. [90] 陈明, 朱珏樟, 席晓桃. 基于知识图谱的花卉病虫害知识管理方法[J]. 农业机械学报, 2023, 54(3): 291-300. CHEN M, ZHU J Z, XI X T. Knowledge management method of flower diseases and pests based on knowledge graph[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 291-300. [91] 胡浩, 高静, 刘振羽. 奶牛产奶量性状相关基因知识图谱的研究与构建[J]. 计算机工程与应用, 2023, 59(2): 299-305. HU H, GAO J, LIU Z Y. Research and construction of genetic knowledge graph of milk yield traits in dairy cows[J]. Computer Engineering and Applications, 2023, 59(2): 299-305. |
[1] | 邱凌, 张安思, 张羽, 李少波, 李传江, 杨磊. 面向无人机故障诊断的知识图谱构建应用方法[J]. 计算机工程与应用, 2023, 59(9): 280-288. |
[2] | 邱云飞, 邢浩然, 李刚. 矿井建设知识图谱构建研究综述[J]. 计算机工程与应用, 2023, 59(7): 64-79. |
[3] | 张嘉宇, 郭玫, 张永亮, 李梅, 耿楠, 耿耀君. 细粒度苹果病虫害知识图谱构建研究[J]. 计算机工程与应用, 2023, 59(5): 270-280. |
[4] | 王艺茹, 史东辉. 使用CIDOC CRM构建建筑领域非遗知识本体[J]. 计算机工程与应用, 2023, 59(3): 317-326. |
[5] | 辛辉, 谢镇玺, 李朋骏, 王金龙, 熊晓芸. 面向食品贮藏领域的知识图谱构建方法研究[J]. 计算机工程与应用, 2023, 59(22): 329-342. |
[6] | 胡浩, 高静, 刘振羽. 奶牛产奶量性状相关基因知识图谱的研究与构建[J]. 计算机工程与应用, 2023, 59(2): 299-305. |
[7] | 邱小平, 陈炯. 基于知识情境的仓储领域知识图谱构建[J]. 计算机工程与应用, 2023, 59(14): 94-106. |
[8] | 邓健峰, 王涛, 程良伦. 机器人故障诊断事理逻辑知识图谱构建研究[J]. 计算机工程与应用, 2023, 59(13): 139-148. |
[9] | 黄贺瑄, 王晓燕, 顾正位, 刘静, 臧亚男, 孙歆. 医学知识图谱构建技术及发展现状研究[J]. 计算机工程与应用, 2023, 59(13): 33-48. |
[10] | 汪玉, 王鑫, 张淑娟, 郑国强, 赵龙, 郑高峰. 异构大数据环境中高效率知识融合方法的研究[J]. 计算机工程与应用, 2022, 58(6): 142-148. |
[11] | 闫志豪, 刘京菊, 郭徽, 郭兵阳. 基于域名系统知识图谱的CDN域名识别技术[J]. 计算机工程与应用, 2022, 58(6): 149-156. |
[12] | 熊中敏, 马海宇, 李帅, 张娜. 知识图谱在海洋领域的应用及前景分析综述[J]. 计算机工程与应用, 2022, 58(3): 15-33. |
[13] | 解天扬, 陈明, 席晓桃. 新闻知识图谱中知识融合量化评估研究[J]. 计算机工程与应用, 2022, 58(21): 294-300. |
[14] | 袁俊, 刘国柱, 梁宏涛, 罗清彩. 知识图谱在商业银行风控领域的研究与应用综述[J]. 计算机工程与应用, 2022, 58(19): 37-52. |
[15] | 张永威, 张岩, 唐新余, 王蒙. 关系型数据的知识抽取和RDF转换框架及实现[J]. 计算机工程与应用, 2022, 58(17): 213-223. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||