计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (22): 1-14.DOI: 10.3778/j.issn.1002-8331.2305-0162
余鹏,刘星雨,程颢,杨佳琦,陈国华,贺超波
出版日期:
2023-11-15
发布日期:
2023-11-15
YU Peng, LIU Xingyu, CHENG Hao, YANG Jiaqi, CHEN Guohua, HE Chaobo
Online:
2023-11-15
Published:
2023-11-15
摘要: 在线教育的快速发展使得在线课程数量爆炸式增长,学习者很容易陷入“课程过载”带来的课程信息获取效率低下的问题,这推动了在线课程推荐系统的产生和发展。目前在线课程推荐系统已成为研究热点,并且在该领域中提出了大量方法,有必要对最新的研究进展进行系统的梳理分析。首先归纳总结在线课程推荐系统的基本框架和相关概念。然后重点对比分析现有在线课程推荐系统采用的各类核心推荐方法,其中包括基于关联规则挖掘、基于矩阵分解、基于概率模型、基于深度学习、基于智能优化、基于语义计算等类型的方法。最后介绍在线课程系统的各种评价指标和公开可用的数据集,并展望未来的发展方向。
余鹏, 刘星雨, 程颢, 杨佳琦, 陈国华, 贺超波. 在线课程推荐系统综述[J]. 计算机工程与应用, 2023, 59(22): 1-14.
YU Peng, LIU Xingyu, CHENG Hao, YANG Jiaqi, CHEN Guohua, HE Chaobo. Survey of Online Course Recommendation System[J]. Computer Engineering and Applications, 2023, 59(22): 1-14.
[1] 全国信息技术标准化技术委员会.信息技术学习、教育和培训在线课程:GB/T 36642—2018[S].北京:中国标准出版社,2018. National Technical Committee for Information Technology Standardization.Online courses for IT learning,education and training:GB/T 36642—2018[S].Beijing:China Standard Publishing House,2018. [2] QIU X.Blended teaching mode of higher vocational English based on MOOC+ SPOC[J].Wireless Communications and Mobile Computing,2022.DOI:10.1155/2022/9320161. [3] CNNIC.第50次中国互联网络发展状况统计报告[R].北京:中国互联网络信息中心,2022. CNNIC.The 50th statistical report on the development status of China’s Internet[R].Beijing:China Internet Network Information Center,2022. [4] 中国政府网.教育部关于印发《教育信息化2.0行动计划》的通知[EB/OL].(2018-04-13)[2023-04-27].http://www.gov.cn/zhengce/zhengceku/2018-12/31/content_5443362.htm. China Government Network.Notice of the Ministry of Education on the issuance of the action plan of education informatization 2.0[EB/OL].(2018-04-13)[2023-04-27].http://www.gov.cn/zhengce/zhengceku/2018-12/31/content_5443362.htm. [5] 中国政府网.“十四五”国家信息化规划[EB/OL].(2021-12-28)[2023-04-27].http://www.gov.cn/xinwen/2021-12/28/content_5664873.htm. China Government Network.The 14th five-year plan of national informatization[EB/OL].(2021-12-28)[2023-04-27].http://www.gov.cn/xinwen/2021-12/28/content_5664873.htm. [6] 中国政府网.教育部办公厅关于实施一流本科专业建设“双万计划”的通知[EB/OL].(2019-04-04)[2023-04-27].http://www.moe.gov.cn/srcsite/A08/s7056/201904/t20190409_377216.html. China Government Website.Notice of the general office of the Ministry of Education on the implementation of the “double million plan” for the construction of first-class undergraduate programs[EB/OL].(2019-04-04)[2023-04-27].http://www.moe.gov.cn/srcsite/A08/s7056/201904/t20190409377216.html. [7] 胡园园,姜文君,任德盛,等.一种结合用户适合度和课程搭配度的在线课程推荐方法[J].计算机研究与发展,2022,59(11):2520-2533. HU Y Y,JIANG W J,REN D S,et al.An online course recommendation method combining user suitability and course matching degree[J].Computer Research and Development,2022,59(11):2520-2533. [8] WANG L.Collaborative filtering recommendation of music MOOC resources based on spark architecture[J].Computational Intelligence and Neuroscience,2022.DOI:10.1155/2022/2117081. [9] WANG S,LI Y.Learning preference recommendation with heterogeneous graph neural networks in MOOC[C]//Proceedings of the 2021 4th International Conference on Artificial Intelligence and Pattern Recognition,2021:629-635. [10] ZHANG H,SHEN X,YI B,et al.KGAN:knowledge grouping aggregation network for course recommendation in MOOCs[J].Expert Systems with Applications,2023,211:118344. [11] GONG J,WANG C,ZHAO Z,et al.Automatic generation of meta-path graph for concept recommendation in MOOCs[J].Electronics,2021,10(14):1671. [12] LU J.A survey of online course recommendation techniques[J].Open Journal of Applied Sciences,2022,12(1):134-154. [13] URDANETA-PONTE M C,MENDEZ-ZORRILLA A,OLEAGORDIA-RUIZ I.Recommendation systems for education:systematic review[J].Electronics,2021,10(14):1611. [14] TANG S.Personalized accurate recommendation algorithm for distance education courses based on Apriori classification[C]//Proceedings of the 2022 Global Reliability and Prognostics and Health Management,2022:1-7. [15] LIU J,WU J,YANG Y,et al.Application of Apriori algorithm in professional elective course data mining for university[C]//Proceedings of the 2022 4th International Conference on Computer Science and Technologies in Education,2022:1-5. [16] FAUZAN F,NURJANAH D,RISMALA R.Apriori association rule for course recommender system[J].Indonesia Journal on Computing,2020,5(2):1-16. [17] ZHANG H,HUANG T,LV Z,et al.MCRS:a course recommendation system for MOOCs[J].Multimedia Tools and Applications,2018,77:7051-7069. [18] MALHOTRA I,CHANDRA P,LAVANYA R.Course recommendation using domain-based cluster knowledge and matrix factorization[C]//Proceedings of the2022 9th International Conference on Computing for Sustainable Global Development,2022:12-18. [19] SYMEONIDIS P,MALAKOUDIS D.Multimodal matrix factorization with side information for recommending massive open online courses[J].Expert Systems with Applications,2019,118:261-271. [20] GUO T,WEN Y,WANG F,et al.Learning resource recommendation based on generalized matrix factorization and long short-term memory model[C]//Proceedings of the 2019 IEEE International Conference on Cloud Computing Technology and Science,2019:217-222. [21] LI J,CHANG C,YANG Z,et al.Probability matrix factorization algorithm for course recommendation system fusing the influence of nearest neighbor users based on cloud model[C]//Proceedings of the 4th International Conference on Human Centered Computing.Cham:Springer,2018:488-496. [22] LAN A S,SPENCER J C,CHEN Z,et al.Personalized thread recommendation for MOOC discussion forums[C]//Proceedings of the 2018 European Conference on Machine Learning and Knowledge Discovery in Databases,Dublin,Sep 10-14,2018:725-740. [23] MORISE H,OYAMA S,KURIHARA M.Bayesian probabilistic tensor factorization for recommendation and rating aggregation with multicriteria evaluation data[J].Expert Systems with Applications,2019,131:1-8. [24] ALAOUI H H,HACHEM E,ZITI C.Modern probabilistic model:filtering massive data in E-learning[J].Iraqi Journal of Science,2021(S):52-58. [25] MA K.Research on basketball teaching network course resource recommendation method based on deep learning algorithm[J].Mobile Information Systems,2021.DOI:10.1155/2021/3256135. [26] CHANAA A.An analysis of learners’ affective and cognitive traits in context-aware recommender systems(CARS) using feature interactions and factorization machines (FMs)[J].Journal of King Saud University-Computer and Information Sciences,2022,34(8):4796-4809. [27] YUHANA U L,DJUNAIDY A,PURNOMO M H.Development of text classification based on difficulty level in adaptive learning system using convolutional neural network[C]//Proceedings of the 2021 International Electronics Symposium,2021:238-243. [28] EZALDEEN H,MISRA R,BISOY S K,et al.A hybrid E-learning recommendation integrating adaptive profiling and sentiment analysis[J].Journal of Web Semantics,2022,72:100700. [29] SHENG D,YUAN J,XIE Q,et al.MOOCRec:an attention meta-path based model for top-K recommendation in MOOC[C]//Proceedings of the 13th International Conference on Knowledge Science,Engineering and Management,Hangzhou,Aug 28-30,2020:280-288. [30] WANG J,XIE H,AU O T S,et al.Attention-based CNN for personalized course recommendations for MOOC learners[C]//Proceedings of the 2020 International Symposium on Educational Technology,2020:180-184. [31] ZHU Q.Network course recommendation system based on double-layer attention mechanism[J].Scientific Programming,2021.DOI:10.1155/2021/3256135. [32] LI Q.A study on the construction of translation curriculum system for English majors from the perspective of human-computer interaction[J].Advances in Multimedia,2022.DOI:10.1155/2022/5902199. [33] HUANG W,CHU H.Research on student curriculum selection recommendation system based on graph convolutional network[C]//Proceedings of the 2021 2nd International Conference on Information Science and Education,2021:432-436. [34] ZHOU X,LIN D,LIU Y,et al.Layer-refined graph convolutional networks for recommendation[J].arXiv:2207. 11088,2022. [35] WANG J,XIE H,WANG F L,et al.Top-N personalized recommendation with graph neural networks in MOOCs[J].Computers and Education:Artificial Intelligence,2021,2:100010. [36] WANG X,MA W,GUO L,et al.HGNN:hyperedge-based graph neural network for MOOC course recommendation[J].Information Processing & Management,2022,59(3):102938. [37] CHEN W,MA W,JIANG Y,et al.GADN:GCN-based attentive decay network for course recommendation[C]//Proceedings of the 15th International Conference on Knowledge Science,Engineering and Management,Singapore,Aug 6-8,2022.Cham:Springer,2022:529-541. [38] 吕晓琦,纪科,陈贞翔,等.结合注意力与循环神经网络的专家推荐算法[J].计算机科学与探索,2022,16(9):2068-2077. LYU X Q,JI K,CHEN Z X,et al.Expert recommendation algorithm combining attention and recurrent neural networks[J].Journal of Frontiers of Computer Science and Technology,2022,16(9):2068-2077. [39] ZHANG Q,LI Y,ZHANG G,et al.A recurrent neural network-based recommender system framework and prototype for sequential E-learning[C]//Proceedings of the 14th International FLINS Conference on Developments of Artificial Intelligence Technologies in Computation and Robotics,2020:488-495. [40] LI C,ZHOU H.Enhancing the efficiency of massive online learning by integrating intelligent analysis into MOOCs with an application to education of sustainability[J].Sustainability,2018,10(2):468. [41] SAITO T,WATANOBE Y.Learning path recommendation system for programming education based on neural networks[J].International Journal of Distance Education Technologies,2020,18(1):36-64. [42] ZHAO A,MA Y.Research on recommendation of big data for higher education based on deep learning[J].Scientific Programming,2022.DOI:10.1155/2022/5448442. [43] GOMEDE E,DE BARROS R M,DE SOUZA MENDES L.Deep auto encoders to adaptive E-learning recommender system[J].Computers and Education:Artificial Intelligence,2021,2:100009. [44] WANG C,ZHU H,ZHU C,et al.Personalized employee training course recommendation with career development awareness[C]//Proceedings of the 2020 Web Conference,2020:1648-1659. [45] MAWANE J,NAJI A,RAMDANI M.A cluster validity for optimal configuration of Kohonen maps in E-learning recommendation[J].Indonesian Journal of Electrical Engineering and Computer Science,2022,26:482-492. [46] MAWANE J,NAJI A,RAMDANI M.Unsupervised deep collaborative filtering recommender system for E-learning platforms[C]//Proceedings of the 3rd International Conference on Smart Applications and Data Analysis,Marrakesh,Jun 25-26,2020:146-161. [47] TAN J,CHANG L,LIU T,et al.Attentional autoencoder for course recommendation in MOOC with course relevance[C]//Proceedings of the 2020 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery,2020:190-196. [48] SHEN D,JIANG Z.Online teaching course recommendation based on autoencoder[J].Mathematical Problems in Engineering,2022.DOI:10.1155/2022/8549563. [49] LEFRANC A,JOYNER D A.SAGA:curricula optimization[C]//Proceedings of the 7th ACM Conference on Learning@Scale,2020:317-320. [50] GUNAWAN A,WIDJAJA A T,LEE R K W,et al.Metaheuristic for the personalized course sequence recommendation problem[C]//Proceedings of the 13th International Conference on the Practice and Theory of Automated Timetabling,2021. [51] HSSINA B,ERRITALI M.A personalized pedagogical objectives based on a genetic algorithm in an adaptive learning system[J].Procedia Computer Science,2019,151:1152-1157. [52] AL-TWIJRI M I,LUNA J M,HERRERA F,et al.Course recommendation based on sequences:an evolutionary search of emerging sequential patterns[J].Cognitive Computation,2022,14(4):1474-1495. [53] CHENG B,ZHANG Y,SHI D.Ontology-based personalized learning path recommendation for course learning[C]//Proceedings of the 2018 9th International Conference on Information Technology in Medicine and Education,2018:531-535. [54] EL AISSAOUI O,OUGHDIR L.A learning style-based ontology matching to enhance learning resources recommendation[C]//Proceedings of the 2020 1st International Conference on Innovative Research in Applied Science,Engineering and Technology,2020:1-7. [55] DIAO X,ZENG Q,DUAN H,et al.Personalized learning resource recommendation based on course ontology and cognitive ability[J].Journal of Computers,2021,32(2):149-163. [56] 赵晔辉,柳林,王海龙,等.知识图谱推荐系统研究综述[J].计算机科学与探索,2023,17(4):771-791. ZHAO Y H,LIU L,WANG H L,et al.Survey of knowledge graph recommendation system research[J].Journal of Frontiers of Computer Science and Technology,2023,17(4):771-791. [57] ZHOU J,JIANG G,DU W,et al.Profiling temporal learning interests with time-aware transformers and knowledge graph for online course recommendation[J].Electronic Commerce Research,2022.DOI:10.1007/s10660-022-09541-z. [58] WU H,MENG F J.Research on the application of personalized course recommendation of learn to rank based on knowledge graph[C]//Proceedings of the 9th EAI International Conference on Mobile Wireless Middleware,Operating Systems and Applications,Hohhot,Jul 11,2020:19-30. [59] YANG S,CAI X.Bilateral knowledge graph enhanced online course recommendation[J].Information Systems,2022,107:102000. [60] XU G,JIA G,SHI L,et al.Personalized course recommendation system fusing with knowledge graph and collaborative filtering[J].Computational Intelligence and Neuroscience,2021.DOI:10.1155/2021/9590502. [61] WANG X,BO D,SHI C,et al.A survey on heterogeneous graph embedding:methods,techniques,applications and sources[J].IEEE Transactions on Big Data,2023,9(2):415-436. [62] WANG T,MA F,WANG Y,et al.Heterogeneous information enhanced prerequisite learning in massive open online courses[C]//Proceedings of the 2022 IEEE International Conference on Data Mining,2022:1203-1208. [63] WANG H,ZHOU K,ZHAO X,et al.Curriculum pre-training heterogeneous subgraph transformer for top-N recommendation[J].ACM Transactions on Information Systems,2023,41(1):1-28. [64] BRUUN S B,LESNIAK K K,BIASINI M,et al.Graph-based recommendation for sparse and heterogeneous user interactions[J].arXiv:2301.11009,2023. [65] WANG S,WU W,ZHANG Y.MOOC resources recommendation based on heterogeneous information network[C]//Proceedings of the 2022 International Conference on Natural Computation,Fuzzy Systems and Knowledge Discovery.Cham:Springer,2023:1219-1227. [66] WANG X,JIA L,GUO L,et al.Multi-aspect heterogeneous information network for MOOC knowledge concept recommendation[J].Applied Intelligence,2023,53(10):11951-11965. [67] SHENG D,YUAN J,XIE Q,et al.ACMF:an attention collaborative extended matrix factorization based model for MOOC course service via a heterogeneous view[J].Future Generation Computer Systems,2022,126:211-224. [68] 班启敏,吴雯,胡文心,等.基于学习者知识和性格的个性化课程推荐[J].华东师范大学学报(自然科学版),2022(6):87-101. BAN Q M,WU W,HU W X,et al.Personalized course recommendations based on learners’ knowledge and personality[J].Journal of East China Normal University(Natural Science Edition),2022(6):87-101. [69] ESTEBAN A,ZAFRA A,ROMERO C.Helping university students to choose elective courses by using a hybrid multi-criteria recommendation system with genetic optimization[J].Knowledge-Based Systems,2020,194:105385. [70] GONG J,WAN Y,LIU Y,et al.Reinforced MOOCs concept recommendation in heterogeneous information networks[J].arXiv:2203.11011,2022. [71] SHANI G,GUNAWARDANA A.Evaluating recommendation systems[M]//Recommender systems handbook.Boston:Springer,2011:257-297. [72] HO A,REICH J,NESTERKO S,et al.HarvardX and MITx:the first year of open online courses,fall 2012-summer 2013[R].HarvardX Research Committee,MIT,2014. [73] 胡红梅,宗阳.基于Canvas Network开放数据集的MOOC学习分析[J].开放学习研究,2017(1):59-66. HU H M,ZONG Y.Analysis of MOOC learning based on Canvas Network open dataset[J].Open Learning Research,2017(1):59-66. [74] 石琬若,牛晓杰,郑勤华.以活动为中心的在线课程学习结果影响因素实证研究——以英国开放大学学习分析数据集(OULAD)为例[J].开放学习研究,2018,23(6):10-18. SHI W R,NIU X J,ZHENG Q H.An empirical study of factors influencing learning outcomes of activity-centered online courses—an example from the UK Open University Learning Analytics Dataset(OULAD)[J].Open Learning Research,2018,23(6):10-18. [75] YU J,LUO G,XIAO T,et al.MOOCCube:a large-scale data repository for NLP applications in MOOCs[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020:3135-3142. [76] LIU K,ZHAO X,TANG J,et al.MOOPer:a large-scale dataset of practice-oriented online learning[C]//Proceedings of the 6th China Conference on Knowledge Graph and Semantic Computing:Knowledge Graph Empowers New Infrastructure Construction,Guangzhou,Nov 4-7,2021.Singapore:Springer,2021:281-287. [77] GEDIKLI F,JANNACH D,GE M.How should I explain? A comparison of different explanation types for recommender systems[J].International Journal of Human-Computer Studies,2014,72(4):367-382. [78] XU S,JI J,LI Y,et al.Causal inference for recommendation:foundations,methods and applications[J].arXiv:2301.04016,2023. [79] WANG W,LIN X,FENG F,et al.Causal representation learning for out-of-distribution recommendation[C]//Proceedings of the 2022 ACM Web Conference,2022:3562-3571. [80] ZHANG C,XIE Y,BAI H,et al.A survey on federated learning[J].Knowledge-Based Systems,2021,216:106775. [81] JIE Z,CHEN S,LAI J,et al.Personalized federated recommendation system with historical parameter clustering[J].Journal of Ambient Intelligence and Humanized Computing,2023,14:10555-10565. [82] WIERING M A,VAN OTTERLO M.Reinforcement learning[J].Adaptation,Learning,and Optimization,2012,12(3):729. [83] ZHANG J,HAO B,CHEN B,et al.Hierarchical reinforcement learning for course recommendation in MOOCs[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence,2019:435-442. [84] WANG W,LIN X,FENG F,et al.Generative recommendation:towards next-generation recommender paradigm[J].arXiv:2304.03516,2023. [85] LE-KHAC P H,HEALY G,SMEATON A F.Contrastive representation learning:a framework and review[J].IEEE Access,2020,8:193907-193934. |
[1] | 陈吉尚, 哈里旦木·阿布都克里木, 梁蕴泽, 阿布都克力木·阿布力孜, 米克拉依·艾山, 郭文强. 深度学习在符号音乐生成中的应用研究综述[J]. 计算机工程与应用, 2023, 59(9): 27-45. |
[2] | 姜秋香, 郭伟鹏, 王子龙, 欧阳兴涛, 隆睿睿. Python语言在水文水资源领域中的应用与展望[J]. 计算机工程与应用, 2023, 59(9): 46-58. |
[3] | 罗会兰, 陈翰. 时空卷积注意力网络用于动作识别[J]. 计算机工程与应用, 2023, 59(9): 150-158. |
[4] | 刘华玲, 皮常鹏, 赵晨宇, 乔梁. 基于深度域适应的跨域目标检测算法综述[J]. 计算机工程与应用, 2023, 59(8): 1-12. |
[5] | 何家峰, 陈宏伟, 骆德汉. 深度学习实时语义分割算法研究综述[J]. 计算机工程与应用, 2023, 59(8): 13-27. |
[6] | 张艳青, 马建红, 韩颖, 曹仰杰, 李颉, 杨聪. 真实场景下图像超分辨率重建研究综述[J]. 计算机工程与应用, 2023, 59(8): 28-40. |
[7] | 岱超, 刘萍, 史俊才, 任鸿杰. 利用U型网络的遥感影像建筑物规则化提取[J]. 计算机工程与应用, 2023, 59(8): 105-116. |
[8] | 韦健, 赵旭, 李连鹏. 融合位置信息注意力的孪生弱目标跟踪算法[J]. 计算机工程与应用, 2023, 59(7): 198-206. |
[9] | 赵宏伟, 郑嘉俊, 赵鑫欣, 王胜春, 李浥东. 基于双模态深度学习的钢轨表面缺陷检测方法[J]. 计算机工程与应用, 2023, 59(7): 285-293. |
[10] | 王静, 金玉楚, 郭苹, 胡少毅. 基于深度学习的相机位姿估计方法综述[J]. 计算机工程与应用, 2023, 59(7): 1-14. |
[11] | 蒋玉英, 陈心雨, 李广明, 王飞, 葛宏义. 图神经网络及其在图像处理领域的研究进展[J]. 计算机工程与应用, 2023, 59(7): 15-30. |
[12] | 周玉蓉, 张巧灵, 于广增, 徐伟强. 基于声信号的工业设备故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(7): 51-63. |
[13] | 吕晓玲, 杨胜月, 张明路, 梁明, 王俊超. 改进YOLOv5网络的鱼眼图像目标检测算法[J]. 计算机工程与应用, 2023, 59(6): 241-250. |
[14] | 彭佩, 张美玲, 郑东. 融合CNN_LSTM的侧信道攻击[J]. 计算机工程与应用, 2023, 59(6): 268-276. |
[15] | 吴斌, 丁钰超, ABLA Basri. 自动导引车与机器集成调度问题研究现状[J]. 计算机工程与应用, 2023, 59(6): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||