计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (19): 201-210.DOI: 10.3778/j.issn.1002-8331.2205-0524
李治杰,陈明,冯国富
LI Zhijie, CHEN Ming, FENG Guofu
摘要: 为了解决大部分基于CNN的低光图像增强方法边缘模糊、噪声抑制不足以及对配对数据的依赖等问题,使用生成对抗网络,在生成器上引入双分支结构,可在低光图像和正常光图像无配对的情况下,进行端到端训练。第一个分支使用类U-Net结构的网络学习低光图像到正常光图像的上下文特征映射,第二个分支以低光图像的全分辨率来保留原图的细节,最后通过一个融合层融合两个分支的结果,获得最终增亮后的图像,同时加入了total variation loss来抑制图像噪声。在六个公开数据集(MEF、LIME、NPE、VV、ExDark、LOL)上进行了定性比较和定量实验。实验结果表明该方法在BRISQUE,NIQE和PIQE三种基准测试中优于其他对比算法,平均值分别为17.55、3.74和8.45。该算法增强后的图像边缘细节清晰,减弱了图像噪声。