计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (19): 106-113.DOI: 10.3778/j.issn.1002-8331.2206-0135

• 模式识别与人工智能 • 上一篇    下一篇

集自注意力与边卷积的点云分类分割模型

沈露,杨家志,周国清,霍佳欣,陈梦强,于广旺,张玉阳   

  1. 1.桂林理工大学 信息科学与工程学院,广西 桂林?541006
    2.广西嵌入式技术与智能系统重点实验室,广西 桂林?541006
    3.哈尔滨市城市通智能卡有限责任公司,哈尔滨 150000
  • 出版日期:2023-10-01 发布日期:2023-10-01

Point Cloud Classification Segmentation Model Based on Self-Attention and Edge Convolution

SHEN Lu, YANG Jiazhi, ZHOU Guoqing, HUO Jiaxin, CHEN Mengqiang, YU Guangwang, ZHANG Yuyang   

  1. 1.School of Information Science and Engineering, Guilin University of Technology, Guilin, Guangxi 541006, China
    2.Guangxi Key Laboratory of Embedded Technology and Intelligent Systems, Guilin, Guangxi 541006, China
    3.China Harbin City Smart Card Co., Ltd., Harbin 150000, China
  • Online:2023-10-01 Published:2023-10-01

摘要: 点云数据的无序性、非结构化、离散的特点使得点云分类仍具有挑战性,针对点云特征提取中无法捕获各点之间的局部结构信息和各区域之间的空间信息的问题,提出了一种自注意力与边卷积的点云分类分割网络——Self Attention DGCNN。Self Attention DGCNN云分类分割网络首先将单层边卷积和自注意力机制相结合,分别提取点云数据的局部特征和上下文特征,然后将这两部分特征进行融合传递到下一层再进行特征抽取,并将各层获取的特征加入到全局特征表示中,从而加强物体整体特征的捕获。在ModelNet40数据集和ShapeNet数据集上分别进行了点云分类,部件分割实验。实验结果表明,在ModelNet40数据集上,Self Attention DGCNN网络的总体精度(OA)达到了93.5%,平均精度(mAcc)达到了90.8%。在总体精度上,相较于PointNet、PointNet++、动态图卷积(dynamic graph CNN for learning on point clouds,DGCNN)分别高出4.3、2.8、0.6个百分点。在ShapeNet数据集上的平均并交比(mIoU)达到了86.1%,相较于PointNet、PointNet++、DGCNN网络分别高出2.4、1.0、0.9个百分点,相比其他深度学习网络也有不同程度的提高。

关键词: 点云分类, 点云分割, 自注意力, 神经网络, 深度学习

Abstract: The disorderly, unstructured, and discrete characteristics of cloud data make point cloud classification still challenging. To address the problem that the local structure information between points and the spatial information between regions cannot be captured in point cloud feature extraction, a point cloud classification segmentation network with self-attentiveness and edge convolution—Self Attention DGCNN is proposed. The Self Attention DGCNN cloud classification segmentation network first combines single-layer edge convolution and self-attention mechanism to extract local features and contextual features of point cloud data respectively, and then fuses these two parts of features to pass to the next layer for feature extraction again, and adds the features obtained from each layer to the global feature representation to enhance the capture of overall features of objects. The point cloud classification segmentation experiments are conducted on ModelNet40 dataset and ShapeNet dataset respectively, and the experimental results show that the overall accuracy(OA) of Self Attention DGCNN network reaches 93.5% and the average accuracy(mAcc) reaches 90.8% on ModelNet40 dataset. The overall accuracy is 4.3, 2.8, and 0.6 percentage points higher than PointNet, PointNet++, and Dynamic graph CNN for learning on point clouds(DGCNN), respectively. The average concurrency ratio(mIoU) on the ShapeNet dataset reaches 86.1%, which is 2.4, 1.0, and 0.9 percentage points higher than PointNet, PointNet++, and DGCNN networks, respectively. There are also different degrees of improvement compared to other deep learning networks.

Key words: point cloud classification, point cloud segmentation, self-attention, neural network, deep learning