计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (11): 88-97.DOI: 10.3778/j.issn.1002-8331.2207-0315
钟瑞,蒋斌,李南星,崔晓梅
ZHONG Rui, JIANG Bin, LI Nanxing, CUI Xiaomei
摘要: 针对非可控环境下人脸图像易受光照、姿态变化等复杂因素的影响,进而造成人脸表情识别中人脸检测率低、表情识别精度差的问题,提出了一种嵌入注意力机制残差网络的表情识别方法。在人脸检测阶段,采用改进的RetinaFace算法完成多视角人脸检测,获取人脸区域。在特征提取阶段,使用ResNet-50作为特征提取的主干网络。将预处理后的人脸图片,依次通过该网络的通道注意力网络和空间注意力网络,显式地建模全局图像的相互依赖性。在虚线残差单元的快捷连接中,加入平均池化层进行下采样操作,通过微调残差模块的操作,加强输入特征之间的映射,使提取的表情特征能够较完整地在网络之间传递,以减小特征信息的损失;在网络中再次传入卷积注意力机制模块,增强局部表情特征的通道维度信息和空间维度信息,加强特征图中与表情相关性高的特征区域的重点信息,同时抑制特征图中无关区域的干扰,进而加快网络的收敛速度,提高表情识别率。与基线算法相比,该方法在RAF-DB和FER2013表情数据集上分别取得了87.65%和73.57%的准确率。