计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (9): 167-175.DOI: 10.3778/j.issn.1002-8331.2201-0088
李晋荣,吕国英,李茹,柴清华,王超
LI Jinrong, LYU Guoying, LI Ru, CHAI Qinghua, WANG Chao
摘要: 阅读理解中否定是一种复杂的语言现象,其往往会反转情感或态度的极性。因此,正确分析否定语义对语篇理解具有重要意义。现有否定语义分析方法存在两个问题:第一,研究的否定词较少达不到应用目的;第二,目前汉语否定语义标注只是标注整个句子,这无法明确否定语义。针对该问题提出基于汉语框架语义知识库(Chinese FrameNet)进行否定语义角色标注方法。在框架语义学理论指导下结合汉语否定语义特征对已由FrameNet继承的否定框架重新构建;为了解决捕捉长距离信息以及句法特征问题,提出一种基于Hybrid Attention机制的BiLSTM-CRF语义角色标注模型,其中,Hybrid Attention机制层将局部注意与全局注意结合准确表示句子中的否定语义,BiLSTM网络层自动学习并提取语句上下文信息,CRF层预测最优否定语义角色标签。经过比对验证,该模型能够有效提取出含有否定语义信息,在否定语义框架数据集上F1值达到89.82%。