计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (7): 311-318.DOI: 10.3778/j.issn.1002-8331.2111-0134
孙庆港,王呈
SUN Qinggang, WANG Cheng
摘要: 针对运维知识库系统中故障征兆预测问题,提出面向电梯设备的改进LSTM-AE算法。使用属性子集选择(ACDR)方法筛选特征向量组,剔除电梯运行参数中的冗余特征。同时,针对运行速度特征序列的非平稳性问题,使用变分模态分解(VMD)算法作降噪平稳化处理。在LSTM-AE模型中引入融合BILSTM的滑动窗口注意力机制,提高模型的时序特征提取能力,并通过softmax分类器融合各特征序列的重构误差实现电梯故障征兆预测。实验结果表明,相较经典LSTM-AE算法,提出的改进LSTM-AE算法正常样本判准率提高13%,异常样本误判率降低11%,能够对常见电梯故障进行准确预测,适于构建可靠的电梯运维知识库故障征兆预测模型。