计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (6): 125-133.DOI: 10.3778/j.issn.1002-8331.2110-0005

• 模式识别与人工智能 • 上一篇    下一篇

采用标签组合与融合注意力的多标签文本分类

邬鑫珂,孙俊,李志华   

  1. 江南大学 人工智能与计算机学院,江苏 无锡 214122
  • 出版日期:2023-03-15 发布日期:2023-03-15

Multi-Label Text Classification Based on Label Combination and Fusion of Attentions

WU Xinke, SUN Jun, LI Zhihua   

  1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Online:2023-03-15 Published:2023-03-15

摘要: 传统的多标签文本分类算法在挖掘标签的关联信息和提取文本与标签之间的判别信息过程中存在不足,由此提出一种基于标签组合的预训练模型与多粒度融合注意力的多标签文本分类算法。通过标签组合的预训练模型训练得到具有标签关联性的文本编码器,使用门控融合策略融合预训练语言模型和词向量得到词嵌入表示,送入预训练编码器中生成基于标签语义的文本表征。通过自注意力和多层空洞卷积增强的标签注意力分别得到全局信息和细粒度语义信息,自适应融合后输入到多层感知机进行多标签预测。在特定威胁识别数据集和两个通用多标签文本分类数据集上的实验结果表明,提出的方法在能够有效捕捉标签与文本之间的关联信息,并在F1值、汉明损失和召回率上均取得了明显提升。

关键词: 多标签文本分类, 融合注意力机制, 空洞卷积

Abstract: Traditional multi-label text classification algorithms are insufficient in the process of mining the associated information of labels and extracting the discriminative information between texts and labels. Therefore, a multi-label text classification algorithm based on pre-training model of label combination and multi-granularity fusion attention is proposed. Firstly, a text encoder with label relevance is obtained through the pre-training model training of the label combination, then a gated fusion strategy is used to fuse the pre-trained language model and the word vector to obtain word embedding representations, which are sent to the pre-training encoder to generate a text representation based on label semantics. Finally, global information and fine-grained semantic information are obtained by self-attention and label attention enhanced by multi-layer dilation convolution, which are adaptively fused and input to the multi-layer perceptron for multi-label prediction. Experimental results on the specific threat recognition dataset and the two general multi-label text classification datasets show that the proposed method can effectively capture the association information between labels and texts, and have achieved significant improvement in F1 value, Hamming loss and recall rate.

Key words: multi-label text classification, fusion attention mechanism, dilation convolution