计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (5): 115-121.DOI: 10.3778/j.issn.1002-8331.2109-0237
黎光艳,王修晖
LI Guangyan, WANG Xiuhui
摘要: 由于手写数字容易出现粘连现象,影响了此类字符的分割和识别精度;另一方面,深度学习模型通常计算复杂度较高,导致其无法在资源受限的设备上高效运行。针对上述问题,提出一种多分支轻量级残差网络的手写字符识别方法。针对字符粘连问题制作了90类复合数字,将其与MNIST和7种算术符号混合作为实验数据集。将ResNet残差结构和注意力机制融合,借用Inception思想,采用多分支结构,提高网络的特征学习能力,并将网络通过知识蒸馏来学习深度神经网络ResNet。在对107类手写字符数据集上的实验证明,该方法能达到深度网络的高精度,同时模型复杂度大大降低,实现在树莓派等低配置终端上的高精度识别效果。