计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (4): 252-260.DOI: 10.3778/j.issn.1002-8331.2111-0074

• 网络、通信与安全 • 上一篇    下一篇

基于NS3-gym框架的智能干扰规避系统设计与实现

陈海涛,龚广伟,张姣,赵海涛,熊俊,魏急波,詹德川   

  1. 1.国防科技大学 电子科学学院,长沙 410073
    2.南京大学 人工智能学院,南京 210046
  • 出版日期:2023-02-15 发布日期:2023-02-15

Design and Implementation of Intelligent Interference Avoidance System Based on NS3-gym Framework

CHEN Haitao, GONG Guangwei, ZHANG Jiao, ZHAO Haitao, XIONG Jun, WEI Jibo, ZHAN Dechuan   

  1. 1.College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China
    2.School of Artificial Intelligence, Nanjing University, Nanjing 210046, China
  • Online:2023-02-15 Published:2023-02-15

摘要: 多智能体构建的无线通信网络在受到外部恶意干扰时,智能体需要与环境进行大量交互来学习干扰规律和优化抗干扰策略。为了有效模拟和验证智能体与外部干扰环境的学习交互过程,需要构建智能干扰规避仿真系统。提出了一种基于NS3-gym框架的智能干扰规避系统,NS3模拟智能通信网络场景并将感知到的网络状态数据作为智能体的输入,智能体对输入数据进行学习分析得到干扰规避决策,并通过gym与NS3之间的交互将其返回到NS3中的仿真网络进行抗干扰策略部署。NS3-gym框架提供了NS3和OpenAI gym之间进行信息交互的接口。在Ubuntu20.04系统下搭建了智能干扰规避系统的仿真平台,分别验证了Q学习算法以及WoLF-PHC算法在扫频干扰、贪婪随机策略干扰、跟随干扰、随机干扰四种场景下的抗干扰性能。仿真结果证明了所提系统架构与仿真平台的正确性和有效性。

关键词: 系统仿真, 干扰规避, NS3-gym, 强化学习

Abstract: The agents need to interact with the environment to learn the interference features and optimize the anti-interference strategies, when the multi-agent wireless communication networks are subject to the external malicious interference. It is necessary to design an intelligent interference avoidance simulation platform in order to effectively simulate and verify the learning interaction between agent and external interference environment. An intelligent interference avoidance system based on NS3-gym framework is proposed. NS3 implements a network simulation scenario and shares the sensed network state data as the input of agent. Agent provides interference avoidance strategy via learning and analyzing the input data, then returns it to NS3 for anti-interference strategy deployment through the interaction between gym and NS3. NS3-gym framework provides an interface for information exchange between NS3 and OpenAI gym. The simulation platform is built under Ubuntu20.04 system. The performance of Q-learning algorithm and WoLF-PHC algorithm is verified in four interference scenarios:sweep interference, greedy random strategy interference, follow interference and random interference, respectively. The simulation results indicate that the proposed system architecture and the simulation platform are correct and efficient.

Key words: system simulation, interference avoidance, NS3-gym, reinforcement learning