计算机工程与应用 ›› 2023, Vol. 59 ›› Issue (4): 208-215.DOI: 10.3778/j.issn.1002-8331.2110-0223
梁鸿,陈秋实,邵明文
LIANG Hong, CHEN Qiushi, SHAO Mingwen
摘要: 在现实生活中,人脸图像受隐私或安全因素的限制难以直接采集,因此可以考虑采用图像生成方法。当使用生成对抗网络进行图像生成时,容易出现分辨率低、边缘模糊、身份信息特征丢失等问题。针对上述问题,提出了一种新的人脸特征生成模型:通过将关键信息作为独立编码嵌入隐式空间,再与全局特征进行融合插值实现对人脸关键特征的可控生成;引入改进的注意力模块,在生成过程中关注局部特征和全局特征的相关性;将色差损失和人脸分量损失联合引入整体损失函数中,负责约束像素颜色和人脸纹理特征。该算法可以在人脸局部区域生成自然真实的外观特征,保留原始身份信息,并生成平滑的面部轮廓。使用预处理后的CelebA数据集的实验表明,该算法在主观视觉效果上有显著提升,同时与现有方法相比在PSNR和SSIM上有稳定的提升。