计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (24): 265-275.DOI: 10.3778/j.issn.1002-8331.2106-0191
王恒,吴波,王振明,于剑峰
WANG Heng, WU Bo, WANG Zhenming, YU Jianfeng
摘要: 现有的SLAM方案中,单目SLAM系统无法满足高精度定位。因此提出了一种基于深度估计网络的SLAM系统。此系统在ORB-SLAM的系统上,融合了Sobel边界引导和场景聚合网络(sobel-boundary-induced and scene-aggregated network,SS-Net)的系统,仅依靠单目实现精准定位。SS-Net考虑了不同区域的深度关系和边界在深度预测中的重要特征。基于边界引导和场景聚合网络(boundary-induced and scene-aggregated network,BS-Net),SS-Net提出了边界提取模块(edge detection,ED),改进了图像细化模块(stripe refinement,SR)。SS-Net网络能够考虑不同区域之间的深度相关性,提取重要的边缘,并融合不同层次下面的网络特征,可以处理单帧图像,从而获得整个序列的深度估计。在NYUD v2和TUM数据集上的大量实验表明,SS-Net深度预测有较高的准确性,并且证明了基于SS-Net的SLAM系统比原系统更优秀。