计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (24): 233-238.DOI: 10.3778/j.issn.1002-8331.2106-0476
陈亚超,樊彦国,樊博文,禹定峰
CHEN Yachao, FAN Yanguo, FAN Bowen, YU Dingfeng
摘要: 针对目前点云在大数据量下的自动配准算法计算效率低下,粗配准初值匹配稳定性差,参数难以设置等问题,提出一种基于匹配对间相对几何不变性特点的快速粗配准算法。通过点云邻域特征值筛选一定量的关键点,利用快速点特征直方图(fast point feature histogram,FPFH)描述子初步获取最邻近匹配对;通过点云特征的对称候选寻点策略及两组正确匹配对在源点云与目标点云对应边的2-范数比例不变的特性获取精确的匹配对;利用奇异值分解算法(singular value decomposition,SVD)求解配准目标函数。实验表明,算法策略合理可靠,参数设置相对简易,具有显著的效率及稳定性优势,能够为后续精配准提供稳定精确的初始参数。