计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (24): 107-115.DOI: 10.3778/j.issn.1002-8331.2110-0060
胡晓敏,陈镇填,李敏
HU Xiaomin, CHEN Zhentian, LI Min
摘要: 由于存在诸如CPU运算速度慢,电池容量低等问题,智能移动设备本身无法执行计算需求大的应用程序,需要借助边缘计算技术来降低程序对移动设备硬件的要求。然而将部分计算任务从移动设备传输给边缘服务器,会带来额外的传输能耗和服务器计算能耗。综合考虑影响移动设备和服务器,以及数据传输能耗值的四个因素,即移动设备的计算速度,下载数据功耗,数据卸载百分比和剩余网络带宽占,提出一种基于分层学习的粒子群算法,优化每台移动设备对于这四个参数的取值,更合理分配计算资源使得总能耗最小。对计算资源建模时,还考虑了最大能耗、计算周期、存储、带宽和延迟约束条件。与其他算法进行对比实验发现,通过分层学习优化的粒子群算法,能更快速地获得满足约束条件具有更低能耗的资源调度最优解。