计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (23): 268-277.DOI: 10.3778/j.issn.1002-8331.2207-0442
任艳平,郑 重,江一飞,严远亭,张燕平
REN Yanping, ZHENG Zhong, JIANG Yifei, YAN Yuanting, ZHANG Yanping
摘要: 欠采样是当前解决类不平衡问题的主流方法之一。现有研究表明,高效地处理类别重叠能够有效提升过采样方法的性能。然而,目前对欠采样的研究大多认为由于样本选择策略不当而导致的关键样本丢失是影响欠采样方法性能的主要原因,为此,研究者从不同的角度提出了一系列针对性的方法,但鲜有对欠采样中类别重叠的研究。提出一种融合贝叶斯后验概率和分布密度的欠采样方法(BPDDUS)实现重叠区域样本的检测和清洗,并通过样本的分布信息对清洗后的样本进行欠采样。具体来说,该方法通过贝叶斯后验概率对多数类样本中潜在的噪声和重叠样本进行清洗以增强分类决策边界的清晰度。对清洗后的多数类样本,引入全局分布密度和信息熵来度量样本对不平衡数据分类学习的重要程度并对其分配相应的采样权重。按样本权重欠采样并构建集成分类系统,以提升模型的泛化能力。在43个KEEL数据库数据集上进行的数值实验验证了所提的BPDDUS方法的有效性。