计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (18): 59-70.DOI: 10.3778/j.issn.1002-8331.2201-0397
冯妍妍,魏德健,倪伟
出版日期:
2022-09-15
发布日期:
2022-09-15
FENG Yanyan, WEI Dejian, NI Wei
Online:
2022-09-15
Published:
2022-09-15
摘要: 肺癌位居癌症死亡率首位,对其进行早期诊断和治疗可降低肺癌患者的死亡率。深度学习能够自动提取结节特征,并完成肺结节的良恶性及恶性等级分类,因此深度学习方法成为肺癌早期诊断的重要手段。对常用数据集进行介绍,系统阐述了栈式去噪自编码器(SDAE)、深度置信网络(DBN)、生成对抗网络(GAN)、卷积神经网络(CNN)、循环神经网络(RNN)和迁移学习技术在肺结节良恶性分类中的应用,阐述了深度卷积生成对抗网络(DCGAN)、多尺度卷积神经网络(MCNN)、U型网络(U-Net)和集成学习技术在肺结节恶性等级分类中的应用,针对肺结节分类的深度学习方法进行了综合分析,并对未来研究方向进行展望。
冯妍妍, 魏德健, 倪伟. 深度学习在肺结节辅助诊断中的应用[J]. 计算机工程与应用, 2022, 58(18): 59-70.
FENG Yanyan, WEI Dejian, NI Wei. Application of Deep Learning in Auxiliary Diagnosis of Pulmonary Nodules[J]. Computer Engineering and Applications, 2022, 58(18): 59-70.
[1] SUNG H,FERLAY J,SIEGEL R L,et al.Global cancer statistics 2020:globocan estimates of incidenceand mortality worldwide for 36 cancers in 185 countries[J].Ca:a Cancer Journal for Clinicians,2021,71(3):209-249. [2] QIU H,CAO S,XU R.Cancer incidence,mortality,and burden in China:a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020[J].Cancer Communications,2021,41(10):1037-1048. [3] CAREY S,KANDEL S,FARRELL C,et al.Comparison of conventional chest X ray with a novel projection technique for ultra-low dose CT[J].Medical Physics,2021,48(6):2809-2815. [4] WANG Y,WANG J,YANG S,et al.Proposing a deep learning-based method for improving the diagnostic certainty of pulmonary nodules in CT scan of chest[J].European Radiology,2021,31(11):8160-8167. [5] 张福玲,张少敏.应用于CT图像肺结节检测的深度学习方法综述[J].计算机工程与应用,2020,56(13):20-32. ZHANG F L,ZHANG S M.Review of deep learning methods applied to lung nodule detection in CT images[J].Computer Engineering and Applications,2020,56(13):20-32. [6] LI D,MIKELA VILMUN B,FREDERIK CARLSEN J,et al.The performance of deep learning algorithms on automatic pulmonary nodule detection and classification tested on different datasets that are not derived from LIDC-IDRI:a systematic review[J].Diagnostics,2019,9(4):207. [7] 王远航,唐震.神经网络在CT肺结节的分类应用进展[J].牡丹江医学院学报,2021,42(2):135-137. WANG Y H,TANG Z.Advances in the classification and application of neural network in CT pulmonary nodules[J].Journal of Mudanjiang Medical University,2021,42(2):135-137. [8] JIANG W,ZENG G,WANG S,et al.Application of deep learning in lung cancer imaging diagnosis[J].Journal of Healthcare Engineering,2022,52(5):584-596. [9] FARHAT H,SAKR G E,KILANY R.Deep learning applications in pulmonary medical imaging:recent updates and insights on Covid-19[J].Machine Vision and Applications,2020,31(6):1-42. [10] FRATTINI M,FROESCH P,EPISTOLIO S.Overview of recent advances in molecular analysis for diagnosing early stage lung cancer nodules[J].Translational Lung Cancer Research,2021,10(11):4303. [11] GUERRINI S,DEL ROSCIO D,ZANONI M,et al.Lung cancer imaging:screening result and nodule management[J].International Journal of Environmental Research and Public Health,2022,19(4):2460. [12] ARMATO III S G,MCLENNAN G,BIDAUT L,et al.The lung image database consortium(LIDC) and image database resource initiative(IDRI):a completed reference database of lung nodules on CT scans[J].Medical Physics,2011,38(2):915-931. [13] SETIO A A A,TRAVERSO A,DE BEL T,et al.Validation,comparison,and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images:the luna16 challenge[J].Medical Image Analysis,2017,42:1-13. [14] Trial summary-learn-NLST—the cancer data access system[EB/OL].[2019-12-31].https://biometry.nci.nih.gov/cdas/ learn/nlst/trial-summary/. [15] KUAN K,RAVAUT M,MANEK G,et al.Deep learning for lung cancer detection:tackling the kaggle data science bowl 2017 challenge[J].arXiv:1705.09435,2017. [16] SHIRAISHI J,KATSURAGAWA S,IKEZOE J,et al.Development of a digital image database for chest radiographs with and without a lung nodule[J].American Journal of Roentgenology,2000,174(1):71-74. [17] Danish lung cancer screening trial(DLCST).Full text view-clinicaltrials[EB/OL].[2019-12-31].https://clinicaltrials.gov/ct2/show/NCT00496977. [18] Alitianchi data[EB/OL].[2019-12-31].https://tianchi.ali-yun.com/competition/entrance/231601/information. [19] ARMATO III,SAMUEL G,HADJIISKI L,et al.SPIE-AAPM-NCI lung nodule classification challenge dataset[C]//Proceedings of 2015 SPIE Medieal Imaging Conference,2015. [20] 孙浩天,袁刚,杨杨,等.基于三维各向异性卷积的肺结节良恶性分类[J].计算机工程与应用,2021,57(10):133-138. SUN H T,YUAN G,YANG Y,et al.3D anisotropic convolution based pulmonary nodule classification[J].Computer Engineering and Applications,2021,57(10):133-138. [21] LU X,GU Y,YANG L,et al.Multi-level 3d densenets for false-positive reduction in lung nodule detection based on chest computed tomography[J].Current Medical Imaging,2020,16(8):1004-1021. [22] 罗嘉滢,赵涓涓,强彦,等.基于多特征广义深度自编码的肺结节诊断方法[J].计算机工程与设计,2019,40(1):154-160. LUO J Y,ZHAO J J,QIANG Y,et al.Diagnosis of pulmonary nodules based on multi-feature generalized depth autoencoding[J].Computer Engineering and Design,2019,40(1):154-160. [23] 张华丽,康晓东,冉华,等.用于肺结节影像分类识别的DBN与CNN的比较研究[J].计算机科学,2020,47(S1):254-259. ZHANG H L,KANG X D,RAN H,et al.A comparative study of DBN and CNN for image classification and recognition of lung nodules[J].Computer Science,2020,47(S1):254-259. [24] 张婷,赵文婷,赵涓涓,等.改进的深度信念网络肺结节良恶性分类[J].计算机工程与设计,2018,39(9):2707-2713. ZHANG T,ZHAO W T,ZHAO J J,et al.Improved deep belief network classification of benign and malignant pulmonary nodules[J].Computer Engineering and Design,2018,39(9):2707-2713. [25] LI Y,LIAO C,WANG Y,et al.Energy-efficient optimal relay selection in cooperative cellular networks based on double auction[J].IEEE Transactions on Wireless Communications,2015,14(8):4093-4104. [26] HSU S,YANG C,HUANG C,et al.Semistargan:semi-supervised generative adversarial networks for multi-domain image-to-image translation[C]//Asian Conference on Computer Vision,2018:338-353. [27] KUANG Y,LAN T,PENG X,et al.Unsupervised multi-discriminator generative adversarial network for lung nodule malignancy classification[J].IEEE Access,2020,8:77725-77734. [28] 李莉,张浩洋,乔璐.基于改进深度卷积对抗生成网络的肺结节良恶性分类[J].计算机工程,2020,46(12):262-269. LI L,ZHANG H Y,QIAO L.Benign and malignant classification of lung nodules based on improved deep convolutional adversarial generation network[J].Computer Engineering,2020,46(12):262-269. [29] HUA K,HSU C,HIDAYATI S C,et al.Computer-aided classification of lung nodules on computed tomography images via deep learning technique[J].Oncotargets and Therapy,2015,8. [30] SHEN W,ZHOU M,YANG F,et al.Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification[J].Pattern Recognition,2017,61:663-673. [31] XIE Y,XIA Y,ZHANG J,et al.Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT[J].IEEE Transactions on Medical Imaging,2019,38(4):991-1004. [32] ZUO W,ZHOU F,LI Z,et al.Multi-resolution CNN and knowledge transfer for candidate classification in lung nodule detection[J].IEEE Access,2019,7:32510-32521. [33] XIE S,TU Z.Holistically-nested edge detection[C]//2015 IEEE International Conference on Computer Vision(ICCV),2016. [34] LEI Y,TIAN Y,SHAN H,et al.Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping[J].Medical Image Analysis,2020,60:101628. [35] LIN T,DOLLáR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:2117-2125. [36] SHEN L,WANG X,GAO M,et al.Classification of benign-malignant pulmonary nodules based on multi-view improved dense network[C].[S.l.]:Springer International Publishing,2021:582-593. [37] VEASEY B,FARHANGI M M,FRIGUI H,et al.Lung nodule malignancy classification based on nlstx data[C]//2020 IEEE 17th International Symposium on Biomedical Imaging(ISBI),2020:1870-1874. [38] VEASEY B P,BROADHEAD J,DAHLE M,et al.Lung nodule malignancy prediction from longitudinal CT scans with siamese convolutional attention networks[J].IEEE Open Journal of Engineering in Medicine and Biology,2020,1:257-264. [39] LIMA T J B,ARAIUJO F H D D,FILHO A O D C,et al.Evaluation of data balancing techniques in 3D CNNs for the classification of pulmonary nodules in CT images[C]//2020 IEEE Symposium on Computers and Communications(ISCC),2020. [40] 杨建利,朱德江,邵嘉俊,等.三维多尺度交叉融合网络肺结节分类研究[J].计算机工程与应用,2022,58(14):121-125. YANG J L,ZHU D J,SHAO J J,et al.Research on classification of pulmonary nodules by three-dimensional multi-scale cross fusion network[J].Computer Engineering and Applications,2022,58(14):121-125. [41] LV W,WANG Y,ZHOU C,et al.Development and validation of a clinically applicable deep learning strategy(honors) for pulmonary nodule classification at CT:a retrospective multicentre study[J].Lung Cancer,2021,155:78-86. [42] AL-SHABI M,LAN B L,CHAN W Y,et al.Lung nodule classification using deep local-global networks[J].International Journal of Computer Assisted Radiology and Surgery,2019,14(10):1815-1819. [43] LEI Y,TIAN Y,SHAN H,et al.Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping[J].Medical Image Analysis,2019,60:101628. [44] CHEN Y,LI J,XIAO H,et al.Dual path networks[J].arXiv:1707.01629,2017. [45] JIANG H,GAO F,XU X,et al.Attentive and ensemble 3d dual path networks for pulmonary nodules classification[J].Neurocomputing,2020,398:422-430. [46] TANG S,MA R,LI Q,et al.Classification of benign and malignant pulmonary nodules based on the multiresolution 3d dpsecn model and semisupervised clust[J].IEEE Access,2021(99). [47] XIA K,CHI J,GAO Y,et al.Adaptive aggregated attention network for pulmonary nodule classification[J].Applied Sciences,2021,11(2):610. [48] POLAT H,DANAEI MEHR H.Classification of pulmonary CT images by using hybrid 3d-deep convolutional neural network architecture[J].Applied Sciences,2019,9(5):940. [49] RAFAEL-PALOU X,AUBANELL A,BONAVITA I,et al.Pulmonary nodule malignancy classification using its temporal evolution with two-stream 3d convolutional neural networks[J].arXiv:2005.11341,2020. [50] 杨帆,谢红薇,刘爱媛.基于卷积神经网络的肺结节分类算法[J].计算机工程与应用,2019,55(7):145-150. YANG F,XIE H W,LIU A Y.Lung nodules classification algorithm based on convolutional neural network[J].Computer Engineering and Applications,2019,55(7):145-150. [51] ASTARAKI M,ZAKKO Y,DASU I T,et al.Benign-malignant pulmonary nodule classification in low-dose CT with convolutional features[J].Physica Medica,2021,83:146-153. [52] ZHAO J,ZHANG C,LI D,et al.Combining multi-scale feature fusion with multi-attribute grading,a CNN model for benign and malignant classification of pulmonary nodules[J].Journal of Digital Imaging,2020,33(4):869-878. [53] NI Z,PENG Y.A serialized classification method for pulmonary nodules based on lightweight cascaded convolutional neural network-long short-term memory[J].International Journal of Imaging Systems and Technology,2020,30(4):950-962. [54] WANG C,CHEN D,HAO L,et al.Pulmonary image classification based on inception-v3 transfer learning model[J].IEEE Access,2019,7:146533-146541. [55] HUANG C,LV W,ZHOU C,et al.Discrimination between transient and persistent subsolid pulmonary nodules on baseline CT using deep transfer learning[J].European Radiology,2020. [56] APOSTOLOPOULOS I D,PINTELAS E G,LIVIERIS I E,et al.Automatic classification of solitary pulmonary nodules in PEt/Ct imaging employing transfer learning techniques[J].Medical & Biological Engineering,2021,59(7). [57] ZHANG G,YANG Z,GONG L,et al.Classification of benign and malignant lung nodules from CT images based on hybrid features[J].Physics in Medicine & Biology,2019,64(12):125011. [58] WANG W,CHAKRABORTY G,CHAKRABORTY B.3D multi-scale densenet for malignancy grade classification of pulmonary nodules[C]//2020 11th International Conference on Awareness Science and Technology,2020:1-4. [59] CHEN H,XIA Y,DUAN H,et al.A computed tomography signs quantization analysis method for pulmonary nodules malignancy grading[J].International Journal of Imaging Systems and Technology,2021. [60] MUZAMMIL M,ALI I,HAQ I U,et al.Pulmonary nodule classification using feature and ensemble learning-based fusion techniques[J].IEEE Access,2021,9:113415-113427. [61] WANG D,ZHANG T,LI M,et al.3d deep learning based classification of pulmonary ground glass opacity nodules with automatic segmentation[J].Computerized Medical Imaging and Graphics,2021,88:101814. [62] BONAVITA I,RAFAEL-PALOU X,CERESA M,et al.Integration of convolutional neural networks for pulmonary nodule malignancy assessment in a lung cancer classification pipeline[J].Computer Methods and Programs in Biomedicine,2020,185:105172. [63] DA NóBREGA R V M,REBOU?AS FILHO P P,RODRIGUES M B,et al.Lung nodule malignancy classification in chest computed tomography images using transfer learning and convolutional neural networks[J].Neural Computing and Applications,2020,32(15):11065-11082. [64] AL-SHABI M,LEE H K,TAN M.Gated-dilated networks for lung nodule classification in CT scans[J].IEEE Access,2019,7:178827-178838. [65] 徐久强,洪丽萍,朱宏博,等.一种用于肺结节恶性度分类的生成对抗网络[J].东北大学学报(自然科学版),2018,39(11):1556-1561. XU J Q,HONG L P,ZHU H B,et al.A generative adversarial network for malignancy classification of lung nodules[J].Journal of Northeastern University(Natural Science Edition),2018,39(11):1556-1561. [66] MESSAY T,HARDIE R C,TUINSTRA T R.Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the lung image database consortium and image database resource initiative dataset[J].Medical Image Analysis,2015,22(1):48-62. [67] RONNEBERGER O,FISCHER P,BROX T.U-net:convolutional networks for biomedical image segmentation[C].[S.l.]:Springer International Publishing,2015:234-241. [68] LIAO F,LIANG M,LI Z,et al.Evaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or network[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(11):3484-3495. [69] XIAO N,QIANG Y,BILAL ZIA M,et al.Ensemble classification for predicting the malignancy level of pulmonary nodules on chest computed tomography images[J].Oncology Letters,2020,20(1):401-408. |
[1] | 罗向龙, 郭凰, 廖聪, 韩静, 王立新. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. |
[2] | 阿里木·赛买提, 斯拉吉艾合麦提·如则麦麦提, 麦合甫热提, 艾山·吾买尔, 吾守尔·斯拉木, 吐尔根·依不拉音. 神经机器翻译面对句长敏感问题的研究[J]. 计算机工程与应用, 2022, 58(9): 195-200. |
[3] | 陈一潇, 阿里甫·库尔班, 林文龙, 袁旭. 面向拥挤行人检测的CA-YOLOv5[J]. 计算机工程与应用, 2022, 58(9): 238-245. |
[4] | 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302. |
[5] | 高广尚. 深度学习推荐模型中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(9): 9-18. |
[6] | 吉梦, 何清龙. AdaSVRG:自适应学习率加速SVRG[J]. 计算机工程与应用, 2022, 58(9): 83-90. |
[7] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[8] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[9] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[10] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[11] | 谭暑秋, 汤国放, 涂媛雅, 张建勋, 葛盼杰. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184. |
[12] | 张美玉, 刘跃辉, 侯向辉, 秦绪佳. 基于卷积网络的灰度图像自动上色方法[J]. 计算机工程与应用, 2022, 58(7): 229-236. |
[13] | 张壮壮, 屈立成, 李翔, 张明皓, 李昭璐. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265. |
[14] | 许杰, 祝玉坤, 邢春晓. 基于深度强化学习的金融交易算法研究[J]. 计算机工程与应用, 2022, 58(7): 276-285. |
[15] | 张昊, 张小雨, 张振友, 李伟. 基于深度学习的入侵检测模型综述[J]. 计算机工程与应用, 2022, 58(6): 17-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||