计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (12): 155-162.DOI: 10.3778/j.issn.1002-8331.2012-0089
方健,刘坤
FANG Jian, LIU Kun
摘要: 针对目前舰船目标检测中,多目标情况下的舰船目标很容易被多目标遮挡,造成舰船目标漏检、分类错误等问题,提出了一种基于改进RFBnet(I-RFBnet)的自然图像目标检测方法。使用池化特征融合模块(PFF)和反卷积特征融合模块(DFF)进行特征融合,形成新的六个有效特征层。提出一种跨步长卷积方式来提取特征单元在原图中的关心区域信息,设计了融入注意力机制的膨胀卷积模块(dilate convolutions block,DB)和新的前三个有效特征层再次进行特征融合。引入聚焦分类损失函数解决训练过程中正负样本分布不均衡的问题;最后通过对规模船只检测数据集SeaShips训练后,保存其模型。实验结果表明:改进后的算法检测效果良好,尤其在多目标遮挡下的小目标效果显著。平均精度均值为96.26%,比改进前的算法提高了4.74个百分点,帧率达到26?FPS(frame per second),满足实时检测的需求。