计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (12): 94-101.DOI: 10.3778/j.issn.1002-8331.2012-0554
何水苗,班志杰
HE Shuimiao, BAN Zhijie
摘要: 代表性用户抽样方法在社会网络分析领域中得到广泛的应用,如何使其抽取的子集代表网络中所有用户具有重要的研究意义。现有方法较少关注网络拓扑结构中用户潜在的大量有用信息,通过对统计分层抽样模型进行优化,提出了一种基于权邻域的代表性用户抽样算法。为了从网络拓扑结构中获得用户更多有价值的内容,该算法使用权邻域对用户代表度计算方法进行改进,同时与用户属性相结合。之后根据用户属性值将用户分成不同属性组,计算用户在每个属性组的代表度。接着通过质量函数来衡量代表性用户的代表程度。采用启发式贪心算法抽取代表性用户。在4个数据集上与6种传统抽样算法进行实验比较,结果表明基于权邻域的代表性用户抽样算法在精确率、召回率和F1-Measure评价指标上均有提升。