计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (11): 66-72.DOI: 10.3778/j.issn.1002-8331.2107-0042
孙成硕,戚志东,叶伟琴,单梁
SUN Chengshuo, QI Zhidong, YE Weiqin, SHAN Liang
摘要: 针对于原始帝王蝶优化算法易陷入局部最优解、收敛性不好等问题,提出变异反向学习的自适应帝王蝶优化算法。将遗传算法的变异思想与反向学习策略结合来替代原始的迁移算子,提高全局的收敛性。在原始帝王蝶优化算法的调整算子中融入自适应的策略,使种群更具多样性。在更新的种群中将排序在最后的5只帝王蝶进行柯西变异,让变异个体附近生成更大的扰动,使整个群体在更大的范围内进行寻优。为了验证改进帝王蝶优化算法,通过基准函数和Wilcoxon秩和检验对其进行测试,实验结果表明改进算法的收敛速度及寻优精度得到了很大改进。