计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (10): 224-230.DOI: 10.3778/j.issn.1002-8331.2010-0190
徐志京,孙久武,霍煜豪
XU Zhijing, SUN Jiuwu, HUO Yuhao
摘要: 为解决单一特征细粒度船舶图像识别率低的问题,提出一种循环注意卷积神经网络(recurrent attention convolutional neural network,RA-CNN)与多特征区域融合的船舶目标识别方法。该方法通过在VGG-19网络中引入尺度依赖池化(scale-dependent pooling,SDP)算法解决小目标过度池化的问题,提升了小型船舶的识别性能;注意建议网络(attention proposal network,APN)加入联合聚类(joint clustering)算法,生成多个独立的特征区域,使整个模型充分利用全局信息,提高了船舶识别精度;同时设计特征区域优化方法降低多个特征区域的重叠率,解决了过拟合问题;通过定义新的损失函数来交叉训练VGG-19和APN,加快了收敛速度。利用公开的光电船舶数据集对该方法进行测试实验,识别准确率最高可达90.2%,无论是识别率还是模型的鲁棒性较单特征都有了很大的提升。