计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (10): 193-199.DOI: 10.3778/j.issn.1002-8331.2108-0056
刘路路,杨燕,王杰
LIU Lulu, YANG Yan, WANG Jie
摘要: 随着互联网的不断发展,面向电商产品的用户评论日益增加。研究这些用户评论的情感导向,对于指导产品的更新迭代具有重要意义。以往的方面级情感分析任务通常只涉及文本模态,然而用户的评论数据一般不仅包括纯文本,还包括大量的图文数据。针对这种包括文本和图片的多模态数据,提出了一种新的方面级多模态情感分析模型ABAFN(aspect-based attention and fusion network)。模型结合预训练语言模型BERT和双向长短时记忆网络来获得文本和方面词的上下文表示,同时利用预训练残差网络ResNet提取图片特征生成视觉表示;利用注意力机制基于方面词对上下文表示和视觉表示进行加权;将两个模态加权后的表示级联融合执行情感标签分类任务。在Multi-ZOL数据集上的实验表明,ABAFN模型的性能超过了目前已知文献的结果。