计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (10): 153-161.DOI: 10.3778/j.issn.1002-8331.2011-0321
郭雨鑫,刘升,高文欣,张磊
GUO Yuxin, LIU Sheng, GAO Wenxin, ZHANG Lei
摘要: 针对基本哈里斯鹰优化算法(Harris hawks optimization,HHO)易陷入局部最优值、收敛精度低和收敛速度慢的问题,提出融合精英反向学习与黄金正弦算法的哈里斯鹰优化算法(elite opposition-based learning golden-sine Harris hawks optimization,EGHHO)。融入精英反向学习机制,提高种群多样性和种群质量,提升算法全局寻优性能和收敛精度;融入黄金正弦算法优化哈里斯鹰围捕猎物的方式,有效缩小搜索空间,减少算法收敛时间,增强算法局部开发能力。通过求解多个单模态、多模态和高维度测试函数进行算法之间的对比,结果表明,融合两种策略的EGHHO算法具有较强跳出局部极值的能力以及更高的寻优精度和寻优速度。