计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (8): 90-95.DOI: 10.3778/j.issn.1002-8331.2011-0217

• 网络、通信与安全 • 上一篇    下一篇

基于SDN网络环境感知的智能路由算法

赵季红,张梦雪,乔琳琳,张文娟,卢立伟   

  1. 1.西安邮电大学 通信与信息工程学院,西安 710121
    2.西安交通大学 电子信息工程学院,西安 710049
  • 出版日期:2022-04-15 发布日期:2022-04-15

Intelligent Routing Algorithm Based on SDN Environment Awareness

ZHAO Jihong, ZHANG Mengxue, QIAO Linlin, ZHANG Wenjuan, LU Liwei   

  1. 1.School of Communication and Information Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China
    2.School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
  • Online:2022-04-15 Published:2022-04-15

摘要: 随着网络中海量设备的接入,网络中的环境也日益复杂和多样化,传统的软件定义网络(SDN)路由算法在寻路时没有考虑到网络中的环境因素,如果不考虑这些因素就无法更好地实现对网络节点的实时状态感知,那么也就不能让用户拥有更好的网络体验。针对该问题,结合网络环境信息,提出一种基于SDN网络环境感知的智能路由算法。该算法在时间上进行二维划分,并融合节点的属性信息,计算节点之间的相遇可能性,再通过BP神经网络进行预测,最后选择合适的中继节点完成数据的传输。通过仿真实验证明了该算法在数据传输速率、时延和传输跳数的有效性。

关键词: 软件定义网络, 网络环境, 感知, 属性, 预测

Abstract: With the access of a large number of devices in the network, the environment in the network is becoming more and more complex and diversified. The traditional software-defined network(SDN) routing algorithm does not consider the environmental factors in the network when it finds the way. If these factors are not considered, the real-time status awareness of network nodes cannot be better realized, then users cannot have a better network experience. In response to this problem, combined with network environment information, an intelligent routing algorithm based on SDN network environment awareness is proposed. This algorithm divides two-dimensionally in time, integrates the attribute information of nodes, calculates the probability of encounter between nodes, and then predicts through BP neural network, and finally selects a suitable relay node to complete the data transmission. Simulation experiments have proved the effectiveness of the algorithm in data transmission rate, delay and transmission hops.

Key words: software defined network(SDN), network environment, awareness, attributes, prediction