计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (7): 142-149.DOI: 10.3778/j.issn.1002-8331.2104-0265
赵丹丹,黄德根,孟佳娜,谷丰,张攀
ZHAO Dandan, HUANG Degen, MENG Jiana, GU Feng, ZHANG Pan
摘要: 命名实体识别(named entity recognition,NER)是自然语言处理中重要的基础任务,而中文命名实体识别(Chinese named entity recognition,CNER)因分词歧义和一词多义等问题使其尤显困难。针对这些问题,提出多头注意力机制(multi-heads attention mechanism,Multi-Attention)与字词融合的中文命名实体识别模型(CWA-CNER)。将汉语文本字向量与其在句中可能成词的词向量进行拼接,并将其送入长短时记忆网络(bidirectional long short-term memory neural network,BiLSTM)提取上下文语义信息,进而利用多头注意力机制捕获句中元素间联系的紧密程度,最后通过条件随机场(conditional random field,CRF)进行实体标注。该模型在Boson数据集,1998和2014年《人民日报》三种语料上进行实验,其F1值均达到90%以上,结果表明了模型的有效性。