计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (6): 118-127.DOI: 10.3778/j.issn.1002-8331.2009-0316
雷晨,毛伊敏
LEI Chen, MAO Yimin
摘要: 针对大数据背景下随机森林算法中存在协方差矩阵规模较大、子空间特征信息覆盖不足和节点通信开销大的问题,提出了基于PCA和子空间分层选择的并行随机森林算法PLA-PRF(PCA and subspace layer sampling on parallel random forest algorithm)。对初始特征集,提出了基于PCA的矩阵分解策略(matrix factorization strategy,MFS),压缩原始特征集,提取主成分特征,解决特征变换过程中协方差矩阵规模较大的问题;基于主成分特征,提出基于误差约束的分层子空间构造算法(error-constrained hierarchical subspace construction algorithm,EHSCA),分层选取信息素特征,构建特征子空间,解决子空间特征信息覆盖不足的问题;在Spark环境下并行化训练决策树的过程中,设计了一种数据复用策略(data reuse strategy,DRS),通过垂直划分RDD数据并结合索引表,实现特征复用,解决了节点通信开销大的问题。实验结果表明PLA-PRF算法分类效果更佳,并行化效率更高。