计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (3): 266-273.DOI: 10.3778/j.issn.1002-8331.2009-0332
胡少晖,王修晖
HU Shaohui, WANG Xiuhui
摘要: 目前深度学习算法已经广泛应用于步态识别领域,但是大多数现有方法通过卷积神经网络提取步态全局特征时,忽略了许多包含关键步态信息的局部特征,在一定程度上削弱了步态识别的精度和提升潜力。针对上述问题,提出了一种结合注意力卷积神经网络与分块特征的跨视角步态识别方法,该方法以步态轮廓图序列为输入,每帧图片分别经过相同结构的注意力卷积神经网络融合成整体特征,在网络中加入有效的注意力机制CBAM能显式地建模各空间及通道的重要程度,增大显著区域特征的权重;整体特征被水平分成两块进行训练和步态识别,提取的步态局部特征更适合精细的步态分类。在步态数据集CASIA-B和OU-ISIR-MVLP上进行跨视角步态识别实验,结果证明在训练数据集充足与不足的条件下,该方法在识别精度上均优于现有方法。