计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (2): 161-168.DOI: 10.3778/j.issn.1002-8331.2007-0500
邱宁佳,杨长庚,王鹏,任涛
QIU Ningjia, YANG Changgeng, WANG Peng, REN Tao
摘要: 针对于传统方法中存在的文本特征表示能力差、模型主题识别准确率低等问题,提出一种融合SENet与卷积神经网络的文本主题识别方法。将每个词对应的Word2vec词向量与LDA主题向量进行融合,并依据词语对主题的贡献度完成文档加权向量化处理;构建SECNN主题识别模型,使用SENet对卷积层输出的特征图进行权值的重标定,依靠其提升重要特征并抑制无用特征的性能,高效地进行主题识别;使用FDA评估样本的类别表征能力,提出FDA-SGD算法对模型参数进行调优,完成文本主题识别任务。使用新闻文本数据集验证改进算法的有效性,通过与传统模型对比表明,改进算法可以有效提高模型的收敛速度,具有较好的主题识别能力。