计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (1): 113-121.DOI: 10.3778/j.issn.1002-8331.2012-0432
谢智颖,何原荣,李清泉
XIE Zhiying, HE Yuanrong, LI Qingquan
摘要: 随着大数据与AI技术的发展,由数据驱动的预测模型层出不穷,数据清洗在提升这些模型预测中起着重要的作用。从公交车运行数据的时空相关性入手,分析了公交大数据存在的四类异常,接着在对时间相关性、空间邻近性、时空依赖性等公交大数据特性的分析基础上,提出了整合缓冲区、四分位数、时间依赖网络等时空处理方法的冗余清洗、范围清洗、异常清洗、补全清洗四种清洗方法,然后对公交进出站、轨迹数据集用这几种清洗方法进行了清洗。在不同清洗数据集下,通过LSTM公交到达时间预测精度的比较分析,证明了数据清洗对预测精度的提升是显著的。