计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (1): 26-40.DOI: 10.3778/j.issn.1002-8331.2105-0200
王文曦,李乐林
出版日期:
2022-01-01
发布日期:
2022-01-06
WANG Wenxi, LI Lelin
Online:
2022-01-01
Published:
2022-01-06
摘要: 点云数据被广泛用于多种三维场景,深度学习凭借提取特征自动化、泛化能力强等优势在三维点云的应用领域快速发展,逐渐成为点云分类的主流研究方法。根据提取方式的不同,将现有算法归纳为传统方法以及深度学习算法。着重介绍基于深度学习的代表性方法和最新研究,总结其基本思想以及优缺点,对比分析主要方法的实验结果;展望深度学习在点云分类领域的未来工作以及研究发展方向。
王文曦, 李乐林. 深度学习在点云分类中的研究综述[J]. 计算机工程与应用, 2022, 58(1): 26-40.
WANG Wenxi, LI Lelin. Review of Deep Learning in Point Cloud Classification[J]. Computer Engineering and Applications, 2022, 58(1): 26-40.
[1] MONGUS D,?ALIK B.Computationally efficient method for the generation of a digital terrain model from airborne LiDAR data using connected operators[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2013,7(1):340-351. [2] ZERMAS D,IZZAT I,PAPANIKOLOPOULOS N.Fast segmentation of 3D point clouds:A paradigm on lidar data for autonomous vehicle applications[C]//2017 IEEE International Conference on Robotics and Automation (ICRA),2017:5067-5073. [3] 张瑞菊,周欣,赵江洪,等.一种古建筑点云数据的语义分割算法[J].武汉大学学报(信息科学版),2020,45(5):753-759. ZHANG R J,ZHOU X,ZHAO J H,et al.A semantic segmentation algorithm for point cloud data of an-cient buildings[J].Journal of Wuhan University(Information Science Edition),2020,45(5):753-759. [4] 范雯,何鄂龙,李天琪,等.融合空谱特征的车载LiDAR点云道路标识线提取[J].测绘通报,2018(8):97-101. FAN W,HE E L,LI T Q,et al.Road marking line extraction of vehicle LiDAR point cloud combining spatial spectrum features[J].Bulletin of Surveying and Mapping,2018(8):97-101. [5] 张继贤,林祥国,梁欣廉.点云信息提取研究进展和展望[J].测绘学报,2017,46(10):1460-1469. ZHANG J X,LIN X G,LIANG X L.Research progress and prospect of point cloud information extraction[J].Acta Geodaetoca et Cartgraphica Sinica,2017,46(10):1460-1469. [6] CHEN C,LI X,BELKACEM A N,et al.The mixed kernel function SVM-based point cloud classification[J].International Journal of Precision Engineering and Manufacturing,2019,20(5):737-747. [7] ZHANG J,LIN X,NING X.SVM-based classification of segmented airborne LiDAR point clouds in urban areas[J].Remote Sensing,2013,5(8):3749-3775. [8] NI H,LIN X,ZHANG J.Classification of ALS point cloud with improved point cloud segmentation and random forests[J].Remote Sensing,2017,9(3):288. [9] WEINMANN M,JUTZI B,HINZ S,et al.Semantic point cloud interpretation based on optimal neighborhoods,relevant features and efficient classifiers[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,105:286-304. [10] 孙杰,赖祖龙.利用随机森林的城区机载LiDAR数据特征选择与分类[J].武汉大学学报(信息科学版),2014,39(11):1310-1313. SUN J,LAI Z L.Feature selection and classification of urban airborne LiDAR data using random forest[J].Journal of Wuhan University(Information Science Edition),2014,39(11):1310-1313. [11] 郭波,黄先锋,张帆,等.顾及空间上下文关系的JointBoost点云分类及特征降维[J].测绘学报,2013,42(5):715-721. GUO B,HUANG X F,ZHANG F,et al.JointBoost point cloud classification and feature dimensionality reduction considering spatial context[J].Acta Geodaetoca et Cartgraphica Sinica,2013,42(5):715-721. [12] NIEMEYER J,ROTTENSTEINER F,SOERGEL U.Contextual classification of lidar data and building object detection in urban areas[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,87:152-165. [13] MUNOZ D,BAGNELL J A,VANDAPEL N,et al.Contextual classification with functional maxmargin Markov networks[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition,2009:975-982. [14] SHAPOVALOV R,VELIZHEV E,BARINOVA O.Nonassociative Markov networks for 3D point cloud classification[C]//International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2010. [15] 徐浩钧.基于深度学习的点云分类技术研究[D].银川:北方民族大学,2020. XU H J.Research on point cloud classification technology based on deep learning[D].Yinchuan:Northern University for Nationalities,2020. [16] MATURANA D,SCHERER S.Voxnet:A 3D convolutional neural network for real-time object recognition[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),2015:922-928. [17] WU Z,SONG S,KHOSLA A,et al.3D shapenets:A deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2015:1912-1920. [18] COHEN T S,GEIGER M,K?HLER J,et al.Spherical CNNs[J].arXiv:1801.10130,2018. [19] YOU Y,LOU Y,LIU Q,et al.Pointwise rotation-invariant network with adaptive sampling and 3D spherical voxel convolution[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:12717-12724. [20] RIEGLER G,OSMAN ULUSOY A,GEIGER A.Octnet:Learning deep 3D representations at high resolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3577-3586. [21] WANG P S,LIU Y,GUO Y X,et al.O-CNN:Octree-based convolutional neural networks for 3D shape analysis[J].ACM Transactions on Graphics(TOG),2017,36(4):1-11. [22] KLOKOV R,LEMPITSKY V.Escape from cells:Deep KD-networks for the recognition of 3D point cloud models[C]//Proceedings of the IEEE International Conference on Computer Vision,2017:863-872. [23] HANOCKA R,HERTZ A,FISH N,et al.MeshCNN:A network with an edge[J].ACM Transactions on Graphics(TOG),2019,38(4):1-12. [24] SU H,MAJI S,KALOGERAKIS E,et al.Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the IEEE International Conference on Computer Vision,2015:945-953. [25] QI C R,SU H,NIE?NER M,et al.Volumetric and multi-view CNNs for object classification on 3D data[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:5648-5656. [26] KALOGERAKIS E,AVERKIOU M,MAJI S,et al.3D shape segmentation with projective convo-lutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3779-3788. [27] FENG Y,ZHANG Z,ZHAO X,et al.GVCNN:Group-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:264-272. [28] MA C,GUO Y,YANG J,et al.Learning multi-view representation with LSTM for 3D shape recognition and retrieval[J].IEEE Transactions on Multimedia,2018,21(5):1169-1182. [29] YU T,MENG J,YUAN J.Multi-view harmonized bilinear network for 3D object recogni-tion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:186-194. [30] QI C R,SU H,MO K,et al.Pointnet:Deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:652-660. [31] QI C R,YI L,SU H,et al.Pointnet++:Deep hierarchical feature learning on point sets in a metric space[J].arXiv:1706.02413,2017. [32] JOSEPH-RIVLIN M,ZVIRIN A,KIMMEL R.Moment:Flavor the moments in learning to classify shapes[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,2019. [33] LI J,CHEN B M,LEE G H.So-net:Self-organizing network for point cloud analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:9397-9406. [34] DUAN Y,ZHENG Y,LU J,et al.Structural relational reasoning of point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:949-958. [35] ZHAO H,JIANG L,FU C W,et al.Pointweb:Enhancing local neighborhood features for point cloud processing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:5565-5573. [36] YAN X,ZHENG C,LI Z,et al.Pointasnl:Robust point clouds processing using nonlocal neural networks with adaptive sampling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:5589-5598. [37] PROKUDIN S,LASSNER C,ROMERO J.Efficient learning on point clouds with basis point sets[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:4332-4341. [38] YOUSEFHUSSIEN M,KELBE D J,IENTILUCCI E J,et al.A multi-scale fully convolutional network for semantic labeling of 3D point clouds[J].ISPRS Journal of Photogrammetry and Remote Sensing,2018,143:191-204. [39] WANG Z,ZHANG L,ZHANG L,et al.A deep neural network with spatial pooling(DNNSP) for 3D point cloud classification[J].IEEE Transactions on Geoscience and Remote Sensing,2018,56(8):4594-4604. [40] KOMARICHEV A,ZHONG Z,HUA J.A-CNN:Annularly convolutional neural networks on point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:7421-7430. [41] LI Y,BU R,SUN M,et al.Pointcnn:Convolution on [x]-transformed points[J].Advances in Neural Information Processing Systems,2018,31:820-830. [42] LIU Y,FAN B,XIANG S,et al.Relation-shape convolutional neural network for point cloud analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:8895-8904. [43] WU W,QI Z,FUXIN L.Pointconv:Deep convolutional networks on 3D point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:9621-9630. [44] THOMAS H,QI C R,DESCHAUD J E,et al.Kpconv:Flexible and deformable convolution for point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision,2019:6411-6420. [45] BOULCH A.ConvPoint:Continuous convolutions for point cloud processing[J].Computers & Graphics,2020,88:24-34. [46] WEN C,YANG L,LI X,et al.Directionally constrained fully convolutional neural network for airborne LiDAR point cloud classification[J].ISPRS Journal of Photogrammetry and Remote Sensing,2020,162:50-62. [47] LI X,WANG L,WANG M,et al.DANCE-NET:Density-aware convolution networks with context encoding for airborne LiDAR point cloud classification[J].ISPRS Journal of Photo-grammetry and Remote Sensing,2020,166:128-139. [48] SIMONOVSKY M,KOMODAKIS N.Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:3693-3702. [49] SHEN Y,FENG C,YANG Y,et al.Mining point cloud local structures by kernel correlation and graph pooling[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:4548-4557. [50] WANG Y,SUN Y,LIU Z,et al.Dynamic graph cnn for learning on point clouds[J].ACM Transactions on Graphics,2019,38(5):1-12. [51] ZHANG K,HAO M,WANG J,et al.Linked dynamic graph CNN:Learning on point cloud via linking hierarchical features[J].arXiv:1904.10014,2019. [52] SHI W,RAJKUMAR R.Point-GNN:Graph neural network for 3D object detection in a point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:1711-1719. [53] XU Q,SUN X,WU C Y,et al.Grid-GCN for fast and scalable point cloud learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:5661-5670. [54] LI R,ZHANG Y,NIU D,et al.PointVGG:Graph convolutional network with progressive aggregating features on point clouds[J].Neurocomputing,2021,429:187-198. [55] WANG W,YOU Y,LIU W,et al.Point cloud classification with deep normalized Reeb graph convolution[J].Image and Vision Computing,2021,106:104092. [56] YANG J,ZHANG Q,NI B,et al.Modeling point clouds with self-attention and gumbel subset sampling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:3323-3332. [57] CHEN C,FRAGONARA L Z,TSOURDOS A.GAPointNet:Graph attention based point neural network for exploiting local feature of point cloud[J].Neurocomputing,2021,438:122-132. [58] WANG L,HUANG Y,HOU Y,et al.Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:10296-10305. [59] GUO M H,CAI J X,LIU Z N,et al.PCT:Point cloud transformer[J].arXiv:2012.09688,2020. [60] WEN C,LI X,YAO X,et al.Airborne LiDAR point cloud classification with global-local graph attention convolution neural network[J].ISPRS Journal of Photogrammetry and Remote Sensing,2021,173:181-194. [61] GUO Y L,WANG H,HU Q,et al.Deep learning for 3D point clouds:A survey[J].arXiv:1912.12033,2019. [62] XIE Y,TIAN J,ZHU X X.Linking points with labels in 3D:A review of point cloud semantic segmentation[J].IEEE Geoscience and Remote Sensing Magazine,2020,8(4):38-59. [63] 文沛,程英蕾,余旺盛.基于深度学习的点云分类方法综述[J].激光与光电子学进展,2021,58(16):1-36. WEN P,CHENG Y L,YU W S.A survey of point cloud classification methods based on deep learning[J].Advances in Laser and Optoelectronics,2021,58(16):1-36. [64] DAI A,CHANG A X,SAVVA M,et al.Scannet:Richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:5828-5839. [65] ROTTENSTEINER F,SOHN G,JUNG J,et al.The ISPRS benchmark on urban object classification and 3D building reconstruction[J].ISPRS Annals of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2012,1(1):293-298. [66] LE SAUX B,YOKOYA N,H?NSCH R,et al.2019 IEEE grss data fusion contest:Large-scale semantic 3D reconstruction[J].IEEE Geoscience and Remote Sensing Magazine(GRSM),2019,7(4):33-36. [67] LECUN Y,BENGIO Y,HINTON G.Deep learning[J].Nature,2015,521:436-444. [68] 景庄伟,管海燕,臧玉府,等.基于深度学习的点云语义分割研究综述[J].计算机科学与探索,2021,15(1):1-26. JING Z W,GUAN H Y,ZANG Y F,et al.Survey of point cloud semantic segmentation based on deep learning[J].Journal of Frontiers of Computer Science and Technology,2021,15(1):1-26. [69] GORI M,MONFARDINI G,SCARSELLI F.A new model for learning in graph domains[C]//Proceedings of 2005 IEEE International Joint Conference on Neural Networks,2005:729-734. [70] SCARSELLI F,GORI M,TSOI A C,et al.The graph neural network model[J].IEEE Transactions on Neural Networks,2008,20(1):61-80. [71] BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[J].arXiv:1312.6203,2013. [72] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[J].arXiv:1609.02907,2016. [73] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Advances in Neural Information Processing Systems,2017:5998-6008. [74] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:7132-7141. [75] WANG Q,WU B,ZHU P,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Proceedings of CVF Conference on Computer Vision and Pattern Recognition(CVPR),2020. |
[1] | 张鑫, 姚庆安, 赵健, 金镇君, 冯云丛. 全卷积神经网络图像语义分割方法综述[J]. 计算机工程与应用, 2022, 58(8): 45-57. |
[2] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[3] | 杨荣莹, 何庆, 杜逆索. 门控多特征提取器的中文命名实体识别[J]. 计算机工程与应用, 2022, 58(8): 117-124. |
[4] | 郭馨蔚, 马楠, 刘伟锋, 孙富春, 张津丽, 陈洋, 张国平. 咽拭子采集机器人表情识别与交互[J]. 计算机工程与应用, 2022, 58(8): 125-135. |
[5] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[6] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[7] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[8] | 谭暑秋, 汤国放, 涂媛雅, 张建勋, 葛盼杰. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184. |
[9] | 朱学超, 张飞, 高鹭, 任晓颖, 郝斌. 基于残差网络和门控卷积网络的语音识别研究[J]. 计算机工程与应用, 2022, 58(7): 185-191. |
[10] | 张美玉, 刘跃辉, 侯向辉, 秦绪佳. 基于卷积网络的灰度图像自动上色方法[J]. 计算机工程与应用, 2022, 58(7): 229-236. |
[11] | 张壮壮, 屈立成, 李翔, 张明皓, 李昭璐. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265. |
[12] | 许杰, 祝玉坤, 邢春晓. 基于深度强化学习的金融交易算法研究[J]. 计算机工程与应用, 2022, 58(7): 276-285. |
[13] | 张昊, 张小雨, 张振友, 李伟. 基于深度学习的入侵检测模型综述[J]. 计算机工程与应用, 2022, 58(6): 17-28. |
[14] | 王鑫鹏, 王晓强, 林浩, 李雷孝, 杨艳艳, 孟闯, 高静. 深度学习典型目标检测算法的改进综述[J]. 计算机工程与应用, 2022, 58(6): 42-57. |
[15] | 陈嘉涛, 张泓凯, 黄燕平, 蓝公仆, 许景江, 秦嘉, 安林. 基于视频的生理参数测量技术及研究进展[J]. 计算机工程与应用, 2022, 58(6): 58-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||