计算机工程与应用 ›› 2022, Vol. 58 ›› Issue (1): 1-11.DOI: 10.3778/j.issn.1002-8331.2107-0359
冯钧,张涛,杭婷婷
出版日期:
2022-01-01
发布日期:
2022-01-06
FENG Jun, ZHANG Tao, HANG Tingting
Online:
2022-01-01
Published:
2022-01-06
摘要: 实体关系抽取能够从文本中提取事实知识,是自然语言处理领域中重要的任务。传统关系抽取更加关注于单实体对的关系,但是句子内包含不止一对实体且实体间存在重叠现象,因此重叠实体关系抽取任务具有重大研究价值。任务发展至今,总体可以分为基于序列到序列、基于图和基于预训练语言模型三种方式。基于序列到序列的方式主要以标注策略和复制机制的方法为主,基于图的方式主要以静态图和动态图的方法为主,基于预训练语言模型的方式主要以BERT挖掘潜在语义特征的方法为主。回顾该任务的发展历程,讨论分析每种模型的优势及不足点;结合目前研究的最近动态,对未来的研究方向进行展望。
冯钧, 张涛, 杭婷婷. 重叠实体关系抽取综述[J]. 计算机工程与应用, 2022, 58(1): 1-11.
FENG Jun, ZHANG Tao, HANG Tingting. Survey of Overlapping Entities and Relations Extraction[J]. Computer Engineering and Applications, 2022, 58(1): 1-11.
[1] 鄂海红,张文静,肖思琪,等.深度学习实体关系抽取研究综述[J].软件学报,2019,30(6):1793-1818. E H H,ZHANG W J,XIAO S Q,et al.Survey of entity relationship extraction based on deep learning[J].Journal of Software,2019,30(6):1793-1818. [2] 李冬梅,张扬,李东远,等.实体关系抽取方法研究综述[J].计算机研究与发展,2020,57(7):1424-1448. LI D M,ZHANG Y,LI D Y,et al.Review of entity relation extraction methods[J].Journal of Computer Research and Development,2020,57(7):1424-1448. [3] KAMBHATLA N.Combining lexical,syntactic,and semantic features with maximum entropy models for information extraction[C]//Proceedings of the ACL Interactive Poster and Demonstration Sessions,2004:178-181. [4] ZELENKO D,AONE C,RICHARDELLA A.Kernel methods for relation extraction[J].Journal of Machine Learning Research,2003,3:1083-1106. [5] CHAPELLE O,ZIEN A.Semi-supervised learning[M].Cambridge:MIT Press,2006:3-14. [6] ZHU J,NIE Z,LIU X,et al.StatSnowball:A statistical approach to extracting entity relationships[C]//Proceedings of the 18th International Conference on World Wide Web,2009:101-110. [7] ZHANG Z.Weakly-supervised relation classification for information extraction[C]//Proceedings of the 13th ACM International Conference on Information and Knowledge Management,2004:581-588. [8] HOFFMANN R,ZHANG C,LING X,et al.Knowledge-based weak supervision for information extraction of overlapping relations[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies,2011:541-550. [9] 秦兵,刘安安,刘挺.无指导的中文开放式实体关系抽取[J].计算机研究与发展,2015,52(5):1029-1035. QIN B,LIU A A,LIU T.Unsupervised Chinese open entity relation extraction[J].Journal of Computer Research and Development,2015,52(5):1029-1035. [10] HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313:504-507. [11] BAI F,RITTER A.Structured minimally supervised learning for neural relation extraction[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2019:3057-3069. [12] ZHENG S,HAO Y,LU D,et al.Joint entity and relation extraction based on a hybrid neural network[J].Neurocomputing,2017,257:1083-1106. [13] MINTZ M,BILLS S,SNOW R,et al.Distant supervision for relation extraction without labeled data[C]//Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP,2009:1003-1011. [14] SUTSKEVER I,VINYALS O,LE Q V.Sequence to sequence learning with neural networks[C]//Proceedings of Annual Conference on Neural Information Processing Systems,2014:3104-3112. [15] ZHENG S,WANG F,BAO H,et al.Joint extraction of entities and relations based on a novel tagging scheme[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics,2017:1227-1236. [16] YU B W,ZHANG Z Y,SHU X B,et al.Joint extraction of entities and relations based on a novel decomposition strategy[C]//Proceedings of the 24th European Conference on Artificial Intelligence,2020:2282-2289. [17] 田佳来,吕学强,游新冬,等.基于分层序列标注的实体关系联合抽取方法[J].北京大学学报(自然科学版),2021,57(1):53-60. TIAN J L,LYU X Q,YOU X D,et al.Joint extraction of entities and relations based on hierarchical sequence labeling[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2021,57(1):53-60. [18] 赵敏钧,赵亚伟,赵雅捷,等.一种新的基于深度学习的重叠关系联合抽取模型[J].中国科学院大学学报,DOI:10.7523/j.ucas.2020.0026. ZHAO M J,ZHAO Y W,ZHAO Y J,et al.A new joint model for extracting overlapping relations based on deep learning[J].Journal of University of Chinese Academy of Sciences,DOI:10.7523/j.ucas.2020.0026. [19] LIN K,MIAO K,HONG W,et al.Relation extraction based on relation label constraints[C]//Proceedings of 2020 IEEE 6th International Conference on Computer and Communications(ICCC),2020:2166-2170. [20] ZHUANG C,ZHANG N,JIN X,et al.Joint extraction of triple knowledge based on relation priority[C]//2020 IEEE International Conference on Parallel & Distributed Processing with Applications,Big Data & Cloud Computing,Sustainable Computing & Communications,Social Computing & Networking,2020:562-569. [21] YUAN Y,X ZHOU,PAN S,et al.A relation-specific attention network for joint entity and relation extraction[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence,2020:4054-4060. [22] LIU J,CHEN S,WANG B,et al.Attention as relation:Learning supervised multi-head self-attention for relation extraction[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence,2020:3787-3793. [23] LUO X,LIU W,MA M,et al.BiTT:Bidirectional tree tagging for joint extraction of overlapping entities and relations[J].arXiv:2008.13339,2020. [24] MA L,REN H,ZHANG X.Effective cascade dual-decoder model for joint entity and relation extraction[J].arXiv:2106.14163,2021. [25] WEI Z,SU J,WANG Y,et al.A novel cascade binary tagging framework for relational triple extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,2020:1476-1488. [26] WANG L,XIONG C,DENG N.A research on overlapping relationship extraction based on multi-objective dependency[C]//Proceedings of the 15th International Conference on Computer Science & Education,2020:618-622. [27] WANG Y,YU B,ZHANG Y,et al.TPLinker:Single-stage joint extraction of entities and relations through token pair linking[C]//Proceedings of the 28th International Conference on Computational Linguistics,2020:1572-1582. [28] ZENG X,ZENG D,HE S,et al.Extracting relational facts by an end-to-end neural model with copy mechanism[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,2018:506-514. [29] ZENG X,HE S,ZENG D,et al.Learning the extraction order of multiple relational facts in a sentence with reinforcement learning[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing,2019:367-377. [30] BAI C,PAN L,LUO S,et al.Joint extraction of entities and relations by a novel end-to-end model with a double-pointer module[J].Neurocomputing,2020,377:325-333. [31] ZENG D,ZHANG H,LIU Q.Copymtl:Copy mechanism for joint extraction of entities and relations with multi-task learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:9507-9514. [32] WANG X,LI Q,DING X,et al.A new method for complex triplet extraction of biomedical texts[C]//Proceedings of the 12th International Conference on Knowledge Science,Engineering and Management,2019:146-158. [33] NAYAK T,NG H T.Effective modeling of encoder-decoder architecture for joint entity and relation extraction[C]//Proceedings of the 34th Conference on Artificial Intelligence,2020:8528-8535. [34] WANG S,ZHANG Y,CHE W,et al.Joint extraction of entities and relations based on a novel graph scheme[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence,2018:4461-4467. [35] HONG Y,LIU Y,YANG S,et al.Improving graph convolutional networks based on relation-aware attention for end-to-end relation extraction[J].IEEE Access,2020,8:51315-51323. [36] WANG X,WANG D,JI F.A span-based model for joint entity and relation extraction with relational graphs[C]//Proceedings of 2020 IEEE International Conference on Parallel & Distributed Processing with Applications,Big Data & Cloud Computing,Sustainable Computing & Communications,Social Computing & Networking,2020:513-520. [37] FU T J,LI P H,MA W Y.GraphRel:Modeling text as relational graphs for joint entity and relation extraction[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019:1409-1418. [38] FEI H,REN Y,JI D.Boundaries and edges rethinking:An end-to-end neural model for overlapping entity relation extraction[J].Information Processing & Management,2020,57(6):102311. [39] DUAN G,MIAO J,HUANG T,et al.A relational adaptive neural model for joint entity and relation extraction[J].Frontiers in Neurorobotics,2021,15:635492. [40] DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2019:4171-4186. [41] LI C,TIAN Y.Downstream model design of pre-trained language model for relation extraction task[J].arXiv:2004.03786,2020. [42] SUI D,CHEN Y,LIU K,et al.Joint entity and relation extraction with set prediction networks[J].arXiv:2011. 01675,2020. [43] LIU L,WANG M,HE X,et al.Extracting relational facts based on hybrid Syntax-Guided transformer and pointer network[J].Journal of Intelligent & Fuzzy Systems,2021,40(6):12167-12183. [44] YE H,ZHANG N,DENG S,et al.Contrastive triple extraction with generative transformer[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence,2021:14257-14265. [45] HANG T,FENG J,WU Y,et al.Joint extraction of entities and overlapping relations using source-target entity labeling[J].Expert Systems with Applications,2021,177:114853. [46] FENG J,HUANG M,ZHAO L,et al.Reinforcement learning for relation classification from noisy data[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence,2018:5779-5786. [47] TAKANOBU R,ZHANG T,LIU J,et al.A hierarchical framework for relation extraction with reinforcement learning[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence,2019:7072-7079. [48] WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//Proceedings of World Wide Web Conference,2019:2022-2032. [49] GAO H,PEI J,HUANG H.ProGAN:Network embedding via proximity generative adversarial network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,2019:1308-1316. [50] ZHAO K,XU H,CHENG Y,et al.Representation iterative fusion based on heterogeneous graph neural network for joint entity and relation extraction[J].Knowledge-Based Systems,2021,219:106888. [51] SUN C,QIU X,XU Y,et al.How to fine-tune bert for text classification?[C]//Proceedings of China National Conference on Chinese Computational Linguistics,2019:194-206. [52] LIU W,ZHOU P,ZHAO Z,et al.K-bert:Enabling language representation with knowledge graph[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020:2901-2908. [53] LIU Y,OTT M,GOYAL N,et al.Roberta:A robustly optimized BERT pretraining approach[J].arXiv:1907. 11692,2019. [54] CHEN Y,ZHANG Y,HU C,et al.Jointly extracting explicit and implicit relational triples with reasoning pattern enhanced binary pointer network[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,2021:5694-5703. |
[1] | 石颉, 袁晨翔, 丁飞, 孔维相. SAR图像建筑物目标检测研究综述[J]. 计算机工程与应用, 2022, 58(8): 58-66. |
[2] | 熊风光, 张鑫, 韩燮, 况立群, 刘欢乐, 贾炅昊. 改进的遥感图像语义分割研究[J]. 计算机工程与应用, 2022, 58(8): 185-190. |
[3] | 杨锦帆, 王晓强, 林浩, 李雷孝, 杨艳艳, 李科岑, 高静. 深度学习中的单阶段车辆检测算法综述[J]. 计算机工程与应用, 2022, 58(7): 55-67. |
[4] | 王斌, 李昕. 融合动态残差的多源域自适应算法研究[J]. 计算机工程与应用, 2022, 58(7): 162-166. |
[5] | 谭暑秋, 汤国放, 涂媛雅, 张建勋, 葛盼杰. 教室监控下学生异常行为检测系统[J]. 计算机工程与应用, 2022, 58(7): 176-184. |
[6] | 张美玉, 刘跃辉, 侯向辉, 秦绪佳. 基于卷积网络的灰度图像自动上色方法[J]. 计算机工程与应用, 2022, 58(7): 229-236. |
[7] | 张壮壮, 屈立成, 李翔, 张明皓, 李昭璐. 基于时空卷积神经网络的数据缺失交通流预测[J]. 计算机工程与应用, 2022, 58(7): 259-265. |
[8] | 许杰, 祝玉坤, 邢春晓. 基于深度强化学习的金融交易算法研究[J]. 计算机工程与应用, 2022, 58(7): 276-285. |
[9] | 张昊, 张小雨, 张振友, 李伟. 基于深度学习的入侵检测模型综述[J]. 计算机工程与应用, 2022, 58(6): 17-28. |
[10] | 王鑫鹏, 王晓强, 林浩, 李雷孝, 杨艳艳, 孟闯, 高静. 深度学习典型目标检测算法的改进综述[J]. 计算机工程与应用, 2022, 58(6): 42-57. |
[11] | 陈嘉涛, 张泓凯, 黄燕平, 蓝公仆, 许景江, 秦嘉, 安林. 基于视频的生理参数测量技术及研究进展[J]. 计算机工程与应用, 2022, 58(6): 58-68. |
[12] | 汪晶, 王恺, 严迎建. 基于条件生成对抗网络的侧信道攻击技术研究[J]. 计算机工程与应用, 2022, 58(6): 110-117. |
[13] | 李彦辰, 张小俊, 张明路, 沈亮屹. 基于改进Efficientdet的自动驾驶场景目标检测[J]. 计算机工程与应用, 2022, 58(6): 183-191. |
[14] | 张振伟, 郝建国, 黄健, 潘崇煜. 小样本图像目标检测研究综述[J]. 计算机工程与应用, 2022, 58(5): 1-11. |
[15] | 卢冰洁, 李炜卓, 那崇宁, 牛作尧, 陈奎. 机器学习模型在车险欺诈检测的研究进展[J]. 计算机工程与应用, 2022, 58(5): 34-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||