计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (22): 182-189.DOI: 10.3778/j.issn.1002-8331.2007-0013
杜守信,毋涛
DU Shouxin, WU Tao
摘要:
为解决服装生产中的裁剪分床计划问题,结合生产过程的影响因素和订单需求,建立了裁剪分床的多目标数学模型进行优化,使用一种改进的双种群粒子群-遗传混合算法对模型进行求解。混合算法将进化种群划分为普通种群和精英种群,利用改进的遗传算法来全局搜索进化普通群体并筛选精英个体,同时结合粒子群优化算法进化精英群体。交叉和变异保证种群的多样性,粒子群寻优机制提升进化速度,两种群在进化时交叉影响不断寻找最优方案。实验结果表明:混合算法在解决多目标的生产订单裁剪分床问题上表现稳定,相比改进的遗传算法有更快的寻优速度,比手工计算方法减少1个裁床,裁剪时间缩短5?min且超裁数量降低60%,可以适应不同目标需求,针对实际生产中的裁剪分床有一定的应用价值。