计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (21): 203-208.DOI: 10.3778/j.issn.1002-8331.2006-0320

• 模式识别与人工智能 • 上一篇    下一篇

自适应融合特征的人群计数网络

左健豪,姜文刚   

  1. 江苏科技大学 电子信息学院,江苏 镇江 212003
  • 出版日期:2021-11-01 发布日期:2021-11-04

Adaptive Feature Fusion Network for Crowd Counting

ZUO Jianhao, JIANG Wengang   

  1. School of Electronic Information, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, China
  • Online:2021-11-01 Published:2021-11-04

摘要:

针对人群计数方法中存在的尺度变化和多层级特征融合不佳的问题,基于U-Net的编码器-解码器网络结构,提出一种自适应特征融合网络,来进行精准的人群计数。提出自适应特征融合模块,根据解码器分支的需要,高效地聚合编码器分支提取的高层语义信息和底层的边缘信息;提出自适应上下文信息提取器,从不同感受野下提取多尺度的上下文信息并自适应加权融合,提高网络对于人头尺度变化的鲁棒性。在ShanghaiTech、UCF-CC-50和UCG-QNRF上的实验表明,与目前主流的人群计数算法相比,该算法具有更强的准确性和鲁棒性。

关键词: 人群计数, 卷积神经网络, 密度估计, 多层级特征, 尺度变化, 特征融合

Abstract:

In an attempt to solve the problems of scale change and multi-level feature fusion in population counting method, inspired by U-Net encoder decoder structure network, an adaptive feature fusion network is proposed to carry out accurate population counting. The Adaptive Feature Fusion Module(AFFM) is proposed to efficiently aggregate the high-level semantic information and low-level spatial detail extracted by the encoder branch according to the needs of decoder branch. The Adaptive Context Extractor(ACE) is proposed to extract multi-scale context information on multiple effective field-of-views, then these features are adaptively fused to improve the robustness of the network to scale changes. By conducting exhaustive experiments on Shanghai Tech, UCF-CC-50 and UCF-QNRF, the results show that the network has high accuracy and robustness.

Key words: crowd counting, Convolutional Neural Network(CNN), density estimation, multi?level features, scale variation, feature fusion