计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (21): 203-208.DOI: 10.3778/j.issn.1002-8331.2006-0320
左健豪,姜文刚
ZUO Jianhao, JIANG Wengang
摘要:
针对人群计数方法中存在的尺度变化和多层级特征融合不佳的问题,基于U-Net的编码器-解码器网络结构,提出一种自适应特征融合网络,来进行精准的人群计数。提出自适应特征融合模块,根据解码器分支的需要,高效地聚合编码器分支提取的高层语义信息和底层的边缘信息;提出自适应上下文信息提取器,从不同感受野下提取多尺度的上下文信息并自适应加权融合,提高网络对于人头尺度变化的鲁棒性。在ShanghaiTech、UCF-CC-50和UCG-QNRF上的实验表明,与目前主流的人群计数算法相比,该算法具有更强的准确性和鲁棒性。