计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (20): 279-286.DOI: 10.3778/j.issn.1002-8331.2006-0088
赵宇,祝义,于巧,陈小颖
ZHAO Yu, ZHU Yi, YU Qiao, CHEN Xiaoying
摘要:
跨项目缺陷预测旨在解决传统的项目内缺陷预测的历史数据缺失,新项目初期缺乏训练数据等实际问题。然而,在跨项目缺陷预测中,不同项目之间以及实例之间的数据分布差异降低了其预测性能。针对这一问题,提出了基于分层数据筛选的跨项目缺陷预测方法。该方法将训练数据的筛选过程分为项目层筛选和实例层筛选,从源数据集中选出与目标项目数据分布最接近的候选项目集,在候选项目集中选出与目标项目中实例相似度较高的训练数据集,最后在训练数据集上训练朴素贝叶斯模型。在PROMISE数据集进行实验对比。结果表明,与项目内缺陷预测比较,提出的分层数据筛选方法优于项目内缺陷预测,并且有效降低了训练数据和目标项目数据之间的差异性。