计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (19): 189-197.DOI: 10.3778/j.issn.1002-8331.2104-0430
宋浩楠,赵刚,王兴芬
SONG Haonan, ZHAO Gang, WANG Xingfen
摘要:
知识推理是解决知识图谱中知识缺失问题的重要方法,针对大规模知识图谱中知识推理方法仍存在可解释性差、推理准确率和效率偏低的问题,提出了一种将知识表示和深度强化学习相结合的方法RLPTransE。利用知识表示学习方法,将知识图谱映射到含有三元组语义信息的向量空间中,并在该空间中建立强化学习环境。通过单步择优策略网络和多步推理策略网络的训练,使强化学习智能体在与环境交互过程中,高效挖掘推理规则进而完成推理。在公开数据集上的实验结果表明,相比于其他先进方法,该方法在大规模数据集推理任务中取得更好的表现。