计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (9): 176-181.DOI: 10.3778/j.issn.1002-8331.2003-0014
赵志焱,杨华,胡志伟,宇海萍
ZHAO Zhiyan, YANG Hua, HU Zhiwei, YU Haiping
摘要:
为了解决玉露香梨叶虫害种类多、扩散速度快、人工识别梨叶虫害耗时长的问题,提出了能够在自然环境下对玉露香梨叶虫害图像自动识别的Tiny-Alexnet卷积神经网络(Tiny-Alexnet Convolution Neural Network,TACNN)的虫害识别模型。分析了Alexnet模型的网络结构,并将实地采集的玉露香叶片虫害图像进行统一处理,为避免全连接层卷积核参数过大而产生的过拟合现象,通过优化全连接层,设置不同神经元节点和实验参数,得出了Mid-Alexnet、TACNN两种虫害识别模型。实验结果表明:TACNN较Alexnet和Mid-Alexnet模型有较高的识别准确率,该模型能够有效地提取梨叶虫害特征,类别平均准确率为81.18%,实现了对金龟子、梨木虱、梨瘿蚊三种虫害的准确区分。该模型在玉露香梨叶虫害识别方面具有良好的性能,可实现自然环境下玉露香梨叶虫害的精准识别。