计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (2): 177-185.DOI: 10.3778/j.issn.1002-8331.2005-0420
TIAN Qichuan, MENG Ying
田启川,孟颖
摘要:
针对现有的图像语义分割算法存在小尺度目标丢失和分割不连续的问题,提出多尺度融合增强的图像语义分割算法,该算法在DeeplabV3+网络模型的基础上,通过构建多尺度特征提取和融合增强网络提高了对小目标特征的描述能力,使网络在分割大目标的同时也能获得小目标的特征信息,从而解决了语义分割时小尺度目标丢失和分割不连续的问题。在Cityscapes数据集上实验的结果表明,改进后的算法明显提升了小目标分割精度,解决了分割不连续的问题。最后在公开数据集PASCAL VOC 2012上进一步验证了改进算法的泛化性。