计算机工程与应用 ›› 2021, Vol. 57 ›› Issue (1): 234-241.DOI: 10.3778/j.issn.1002-8331.2005-0301
刘婧,杨旭,刘董经典,牛强
LIU Jing, YANG Xu, LIU Dongjingdian, NIU Qiang
摘要:
吸烟检测已成为公共场所禁烟的重要措施,基于视频图像的吸烟动作识别已广泛用于吸烟检测中。使用深度学习的方法进行图像处理,需要大量数据集训练模型。现有的吸烟动作识别方法的准确率和实时性不够理想,且多只针对一个人进行动作识别。为解决这些问题,提出了一种通过检测周期性动作来识别多人吸烟动作的方法。在进行了大量的实验后发现吸烟行为是有节奏和周期性的,对此具体分析了吸烟行为的周期性并制定了吸烟行为规范;利用人体关节点信息,关注关节点的运动轨迹,检测运动轨迹是否符合周期性规律从而实现吸烟动作识别;同时跟踪多人关节点的信息,以实现多个人实时吸烟行为的识别。实验结果表明,该方法可以达到91%的准确率,在各种情况下都可以保持较高准确率和鲁棒性。