计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (24): 242-248.DOI: 10.3778/j.issn.1002-8331.1912-0387
宋廷强,张信耶,李继旭,范海生,孙媛媛,宗达,刘童心
SONG Tingqiang, ZHANG Xinye, LI Jixu, FAN Haisheng, SUN Yuanyuan, ZONG Da, LIU Tongxin
摘要:
蔬菜大棚对于农业生产具有重要意义。受季节和环境影响,其在遥感影像上不同时期呈现不同形态,仅通过单时相特征提取精度不能满足要求。近几年,深度学习被证明适合遥感数据的分类,为实现深度学习在农业遥感上的有效应用,提出了一种改进的多时相语义分割模型(Multi-temporal Spatial Segmentation Network,MSSN)用于蔬菜大棚提取。提出基于补丁长短时记忆网络(Patch-LSTM),该网络充分利用图像的空间和时序信息。采用带空洞卷积的空间金字塔池化(ASSP)解决网络对尺度敏感问题。进一步添加跳连层(Skip-layer)和反卷积层提升特征图的还原能力。选择山东高密GF-2遥感影像进行实验。结果表明,该分割模型在测试集上有0.95的Precision、0.92的F1 score以及0.93的前景IoU(Intersection Over Union),可以实现高精度的蔬菜大棚提取,为深度学习在农业遥感的应用提供新的方法。