计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (24): 144-150.DOI: 10.3778/j.issn.1002-8331.1909-0229
张飞翔,余学儒,何卫锋,李琛
ZHANG Feixiang, YU Xueru, HE Weifeng, LI Chen
摘要:
针对在卷积神经网络中定义损失函数为余弦裕度损失函数(Cosineface)后导致收敛变慢以及在实际使用过程中使用L2范数衡量特征相似度存在缺陷的问题,提出了斜率可变的余弦裕度损失函数(Kcosine)和多重范数计算特征相似度的方法。该方法通过在余弦裕度损失函数的基础上添加余弦斜率因子,使得损失函数类内约束随着余弦值的增大而逐渐增强,显式地缩小类内距离,同时利用L2范数和L∞范数构建人脸特征相似度向量,并通过支撑向量机(SVM)实现分类,修正L2范数空间衡量的不稳定性。在LFW和Agedb的数据库上1∶1验证实验表明,改进的损失函数不仅加快了训练的收敛速度,并且将类内距离减少15%以上,同时通过使用多重范数特征代替L2范数,可以将识别率均值提升0.1%左右,标准差也有所降低。