计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (23): 211-219.DOI: 10.3778/j.issn.1002-8331.1911-0012
王南,许道云
WANG Nan, XU Daoyun
摘要:
基于距离正则水平集模型(DRLSE)的左心室MR图像分割算法对梯度信息有很强的依赖性,在图像弱边缘区域容易陷入局部最优,且对初始轮廓的选取敏感。为降低算法对初始轮廓的敏感程度,提高其在左心室图像弱边缘的分割能力,提出一种适用于弱边缘信息的左心室分割算法。在DRLSE的基础上,该分割算法提出运用拟合方法计算基于变异系数分割模型(PSM)的新局部项,算法依靠梯度与图像局部信息驱动曲线演化,降低了DRLSE对初始轮廓的敏感度;引入形状约束力,克服DRLSE算法在左心室外膜弱边界处出现边界泄露的情况。为验证所提算法分割的准确性,基于多伦多市患病儿童医院影像科提供的数据库,利用DRLSE、保持凸性水平集模型(CPLSE)模型、U-Net网络以及提出的内膜算法对心内膜进行分割;利用DRLSE、引入外膜形状约束力的DRLSE模型(DRLSE-shape)、U-Net网络以及提出的外膜算法对心外膜进行分割。实验结果表明,针对左心室内、外膜,所提算法优于上述算法,能降低DRLSE对初始轮廓的敏感程度,提升对左心室弱边界MR图像分割的精确度。