计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (22): 211-216.DOI: 10.3778/j.issn.1002-8331.1910-0239
刘佳敏,何宁,尹晓杰
LIU Jiamin, HE Ning, YIN Xiaojie
摘要:
针对Retinex应用于多种场景时,其约束和参数会受到模型容量限制的问题,提出了一种基于深度学习的低照度图像增强算法,并构建了新的网络架构Retinex-UNet(RUNet)。该架构包含图像分解网络与图像增强网络两部分,利用Retinex-Net网络思想,通过卷积神经网络(Convolutional Neural Network,CNN)学习并分解图像,将其结果作为增强网络的输入,对输入图像进行端对端训练。在增强网络中构建了基于U-Net的网络架构,其可对任意大小的图像进行增强。通过在公开数据集(LOL,SID)上验证表明,RUNet方法在效果上有所改进,尤其是整体视觉效果。