计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (21): 237-241.DOI: 10.3778/j.issn.1002-8331.1908-0165
曹鲁慧,秦丰林,闫中敏
CAO Luhui, QIN Fenglin, YAN Zhongmin
摘要:
医疗保险欺诈对医疗基金的正确使用造成了严重威胁。随着信息化的发展,越来越多的用户属性信息和行为信息被积累下来,使得通过分析用户行为序列进行欺诈识别成为了可能。但在医疗保险背景下,由于供需双方存在严重的信息不对称现象,欺诈者会努力模仿合法用户的行为,而且欺诈者的比例很小,传统的基于分类的欺诈识别算法不再适用。此外,患者的就医行为具有一定的偶发性,时间分布不均匀。针对样本不平衡和时间分布不均匀的挑战,提出基于TLSTM的医保欺诈识别框架,将用户的历史就医行为序列作为TLSTM模型的输入,预测患者再入院原因及诊疗方案,通过比较模型输出与用户当前就医行为的差异程度,来判断用户存在欺诈的可能性。实验表明,该算法在欺诈识别准确度上明显优于已有算法。