计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (21): 85-92.DOI: 10.3778/j.issn.1002-8331.1909-0012
周非,罗晓勇,刘云萍
ZHOU Fei, LUO Xiaoyong, LIU Yunping
摘要:
针对传统的IMM算法采用固定测量噪声协方差矩阵和Markov转移概率矩阵导致模型切换缓慢,跟踪精度下降的问题,提出了一种具有模型概率实时修正的IMM机动目标跟踪算法。该算法在监控区域上建立无线电指纹库,利用支持向量回归算法训练得到观测模型。引入模糊神经网络,在模型交互输出阶段自适应地调整测量误差协方差矩阵。根据IMM子模型中连续时间点之间的模型概率的比值,对Markov转移概率进行修正。仿真结果表明,提出的方法在实时性、跟踪精度方面具有良好的性能。