计算机工程与应用 ›› 2020, Vol. 56 ›› Issue (18): 143-149.DOI: 10.3778/j.issn.1002-8331.1907-0085
谢宏,陈祎婧,袁小芳,陈海滨,王立宸
XIE Hong, CHEN Yijing, YUAN Xiaofang, CHEN Haibin, WANG Lichen
摘要:
现有的视频烟雾检测方法大多通过运动检测提取疑似烟区,并依据经验手工设计提取烟雾特征,在复杂场景中检测准确率不高。针对以上问题,提出了一种基于时空双路3D残差卷积网络的视频烟雾检测方法,基于混合高斯背景模型与原始视频帧的小波低频分量差进行疑似烟区提取,其次构造时空双路3D残差卷积神经网络,并引入注意力机制加权融合烟雾时空域特征,实现端对端的烟雾识别。实验结果表明,该方法可以得到更为完整的疑似烟区,尤其对于过于稀薄和浓厚的烟雾分割效果较好,且相比于传统的烟雾检测方法和2D的烟雾检测卷积网络,在烟雾检测准确率上得到了提高。